About this Manual

About this Manual

Table of Contents

Chapter 2: Standard WGBTScooooiii oottt e b aab b na b 9
tixGrid — CreateandmanipulateliX Grid WIdQELS.........coooeeiiiiiiiie e 9
tixHList — Createandmanipulatelix Hierarchiallist WidQets............cccccoeevviiiiiiiieee 13
tixInputOnly — Createandmanipulatel IX InputONnlyWIdQetS.........covvvviiiiiiiiiiiiiiiee 27
tixNBFrame—- CreateandmanipulateTix NoteBookFramewidgetS..........uevvveveeviveeieiiieeiiieeeeeeeeeeeee, 28
tixTList — CreateandmanipulateTix TabularList WIdQets............ccooeeeeiiiiiiii e, 30

Chapter 3: MEGAWIAGELS.coii i iiiiee et e et a et b aa b aa et e bt e ts et et e s s ss s st s st s s s s s s s ssssssnssenssnnenees 3€
tixBalloon — CreateandmanipulateixBalloon WIAQELS...........uuvuuuirriiiiiiiiiiriiniiieeirerererererreereeeeeeereee.. 38
tixButtonBox— Createandmanipulatelix ButtonBOXWIAQELS........ccooeeieeeiieeiieiiccicccc e 40
tixCheckList= CreateandmanipulateixCheckLiStWidgets..............ccooviveiiiiiiiiiii, 43
tixComboBox— CreateandmanipulateixComboBOXWIAAELS.........cooeeieeiiiieicccicecccccc i 45
tixControl — CreateandmanipulateixCoNtrol WIAQELS...........uuuuuurrrrriiiiiiiiiiiiiiiiiriissrenrrserrrsreeeseeeee.. 52
tixDirList — CreateandmanipulateixDirList WIdgetS...........ccovviiiiiiiiiiii 56
tixDirSelectDialog— Createandmanipulatedirectoryselectiondialogs..........evvvvvveeeveervevireeiieeeeeeeeee. 60
tixDirTree — CreateandmanipulateiXDirTre€ WIAQELS........uuuuururrurirrriiiriieriinersererersensrrerresreereeee——. 62
tixExFileSelectBox- CreateandmanipulateaixExFileSelectBoXVIidgets.........oooeveeiviiiieiicciiniininns 64
tixExFileSelectDialog- CreateandmanipulateixExFileSelectDialogvidgets..........ccuvvvvevveeeeeenen.. 68
tixFileEntry — CreateandmanipulateixFile Entry WIdQets...........coooooieeiiiii e, 70
tixFileSelectBox= CreateandmanipulateTix FileSelectBoXWIAgetS........oooeeeeeveeeeeciecieccecccs 74
tixFileSelectDialog- CreateandmanipulateixFileSelectDialognvidgets............ccceeeeeeeeieeeeeee e, 77
tixLabelEntry— CreateandmanipulateixLabelEntryWidgets............oovvvvviiiiiiiiiiiiiiiiieeeeee 79
tixLabelFrame- CreateandmanipulatdixLabelFramenidgetS...........uveveevieeeiieeiiieiieeiieeiieeeeeeeeeeee, 81
tixListNoteBook— CreateandmanipulateixListNoteBOOKWIAQELS..........evvvveevieieiiiiiiiieeeeieeeeeeeeeeee 83
tixMeter — CreateandmanipulateliX MeterWIidgetS...........uuuuuuuuurrruriiiiiiiriinrerireerrnerrrrrrerrree—————— 86
tixNoteBook— CreateandmanipulateixNoteBOOKWIAQELS.............ccoeeviieiiiiiiiiiiicieeeeeceeeeeee, 88
tixOptionMenu— CreateandmanipulateixOptionMenUWIAQetS.ccccoiieiieiiiiiiiians 92
tixPanedWindow CreateandmanipulateixPanedWindownvidgets..........coooeeeeeeieeeieeiiceieccceccas 95
tixPopupMenu- CreateandmanipulateixPopupMenuNIAetS.ccoovviiviiiiiiiiiiiiiieeeee 99
tixScrolledHList— CreateandmanipulateTix ScrolledHLIiStwidgets........cooeeeeeiiiiiiiiiiieiiiviians 102
tixScrolledListBox— CreateandmanipulateTix ScrolledListBOXwWIdgets........ccoeeeveeiecininnnnnnnnnns 104
tixScrolledText= CreateandmanipulateTix ScrolledTextwidgets...........ccceeeeeeeeeieiiii e, 107
tixScrolledWindow- CreateandmanipulateTix ScrolledWindowwidgets..............ccccoeeeeeeeeeen. 109
tixSelect= CreateandmanipulateiXxSeleCtWIidQetS........cccvvvvviiiiiiiiiiiiiiieeeeeeeeeeeee e, 112
tixStdButtonBox— CreateandmanipulateTix StdButtonBoXwWIdQets..............uvvvrvvvruvvniimrrinninnninnnns 116
tixTree— CreateandmanipulateliXTre€WIAQETScoeiieeiieie e 119

About this Manual

Table of Contents

Chapter 7: EXECULADIEPIOGIAMScviiiiiiiiiiiiiieeeeeeeee ettt ettt e e e e e e e e e e e e e e e e e e aaa s 148
tixwish — Windowingshellfor interpretingTiX COMMAaNAS..........uuvurrrvrrrrrerreeereeeeeereeeeerereeeeereeeeeee 148

ApPPENiX 1: TK COMMEANUS. .. uvvveeiieiiieiiieiieeeeee et ittt ettt et et ettt et e et et e e e et e et e a et e e et e e e ea e e e e e e e e e e e e e e e e e e aeeaeeaeaeeaeaaaeaaaaaaaeens 151
frame— CreateandmanipulateframeWIdgets.............ooovvviiiiiiiiiiiiee 151
image— Createandmanipulat@MagES..........cooeeiiiiiii i 153
options— StandardptionssuppPOrtedY WIAQELS.........cvvviiiiiiiiiiiieiieeieeeieee e 155

Appendix 2: TK Library ReferENCES......coovviiiiiiiii 163
Tk_ConfigureWidgetTk_Offset, Tk_Configurelnfo.Tk_ConfigureValueTk_FreeQOptions
procesxonfigurationoptioNSfOr WIAQELS.........uuuuiiiiiiiiiiiiiiiiiiiiiiieiiire e ee e eseereeeraeeeeeees 163
Tk_AllocBitmapFromObjTk GetBitmap.Tk_GetBitmapFromObjTk DefineBitmap,
Tk_NameOfBitmapTk_SizeOfBitmapTk FreeBitmapFromObjlk_FreeBitmap,

Tk_GetBitmapFromData maintaindatabasef single—plan@ixmaps................cccccceeeeinin. 172
Tk_GetPixelsFromObjTk_GetPixelsTk_GetMMFromObj.Tk_GetScreenMM- translate
DetWEErBIINGSANASCIEEIUNILS.cevvviiiiiiieeiiee ettt e 177
PN o] oL AT G T =AY (o PP 18(
TR 1
TR 1
TR 1
| TR 1
TR 1
LT TR 1
= PR 1
Lot e e e e eeeeeeeeee et eeeeeeeteetea e eeeeeaeteett e eeeeetetae e aaaes 1
8 TR 1
TR 1
LTSRN 1
L TR 1
[TR 1
TR 1
L TR 1
FS TR 1
TR 1
L TR 1

About this Manual

Table of Contents

About this Manual

This manual is originally written in nroff format. It is converted to HTML format using the
tcltk—man2html.tcl tool written by Roger E. Critchlow Jr. The PDF version of this
manual is generated from HTML files using the HTMLDOC tool available from

http://www.easysw.com/htmldoc .

The nroff sources to the Tix portion of this manual may be downloaded from
http:/ftixlibrary.sourceforge.net/ as part of the Tix source distribution. The sources to the
Tcl/Tk portion of this manual may be downloaded from http://dev.scriptics.com/ as part of
the Tcl/Tk source distribution.

Tix and Tcl/Tk are open—source software. Please see theda¢ Notices section for
licensing terms on the documentation included in this manual.

http://www.easysw.com/htmldoc
http://tixlibrary.sourceforge.net/
http://dev.scriptics.com/

Legal Notices

(1) The Tix portion of this Reference Manual is subject to the following licensing terms.

Copyright (c) 1993-1999 loi Kim Lam.
Copyright (c) 2000-2001 Tix Project Group.

This software is copyrighted by the above entities and other parties. The following terms
apply to all files associated with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this
software and its documentation for any purpose, provided that existing copyright notices are
retained in all copies and that this notice is included verbatim in any distributions. No written
agreement, license, or royalty fee is required for any of the authorized uses. Maodifications to
this software may be copyrighted by their authors and need not follow the licensing terms
described here, provided that the new terms are clearly indicated on the first page of each file
where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS
DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS,
AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. government,
the Government shall have only "Restricted Rights" in the software and related
documentation as defined in the Federal Acquisition Regulations (FARS) in Clause 52.227.19
(c) (2). If you are acquiring the software on behalf of the Department of Defense, the

software shall be classified as "Commercial Computer Software" and the Government shall
have only "Restricted Rights" as defined in Clause 252.227-7013 (c) (1) of DFARs.
Notwithstanding the foregoing, the authors grant the U.S. Government and others acting in

its behalf permission to use and distribute the software in accordance with the terms specified
in this license.

(2) The Tcl/Tk portion of this Reference Manual is subject to the following licensing terms.

This software is copyrighted by the Regents of the University of California, Sun
Microsystems, Inc., and other parties. The following terms apply to all files associated with
the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this
software and its documentation for any purpose, provided that existing copyright notices are
retained in all copies and that this notice is included verbatim in any distributions. No written
agreement, license, or royalty fee is required for any of the authorized uses. Maodifications to
this software may be copyrighted by their authors and need not follow the licensing terms

About this Manual

described here, provided that the new terms are clearly indicated on the first page of each file
where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS
DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS,
AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. government,
the Government shall have only "Restricted Rights" in the software and related
documentation as defined in the Federal Acquisition Regulations (FARS) in Clause 52.227.19
(c) (2). If you are acquiring the software on behalf of the Department of Defense, the

software shall be classified as "Commercial Computer Software" and the Government shall
have only "Restricted Rights" as defined in Clause 252.227-7013 (c) (1) of DFARs.
Notwithstanding the foregoing, the authors grant the U.S. Government and others acting in

its behalf permission to use and distribute the software in accordance with the terms specified
in this license.

Chapter 1: Introduction to the Tix Library

TixIntro — Introduction to the Tix library

DESCRIPTION

Tix, which stands for Tk Interface Extension, is an extension library for Tcl/Tk. Tix adds
many new widgets, image types and other commands that allows you to create compelling
Tcl/Tk-based GUI applications.

One advantage of Tix over other Tk widget libraries is many of the Tix standard widgets are
implemented in native code. This enhances performance and provides native look—and-feel
for your applications.

This version of Tix works with Tcl/Tk version 8.0 or above. If Tix has been installed
properly on your system, you can load the package into any Tk script by invoking the
command

package require Tix

After this command has successfully returned, you can start using the functionalities of the
Tix library. See the EXAMPLES section below for example scripts that use Tix.

If the "package require Tix" command fails, you probably need to install a new copy of Tix
on your system. You can download the latest version of Tix from the web site

http://tixlibrary.sourceforge.net/,

STANDARD WIDGETS

Tix includes the following standard widgets which, like their counterparts in Tk, are
implemented in native code to achieve high performance and native look—and-feel.

tixGrid
The tixGrid widget displays items in a spread—-sheet format.

tixHL st
Hierarchical listbox widget. This widget display entries in a tree-like format.

tixinputOnl
A transparent window that can be used to cover another widget so as to disable
mouse input.

tixNBFrame
The tixNBFrame widget is used internally by the tixNoteBook widget to display
choices among a set of overlapping pages.

http://tixlibrary.sourceforge.net/

About this Manual

tixTList
Tabular listbox widget. This widget is similar to the built-in Tk listbox widget but
provides more flexibility in displaying the list entries.

MEGA WIDGETS

Tix provides many new types of mega widgets: these are widgets that are composed of
built-=in Tk widgets and the Tix standard widgets mentioned above.

tixBalloon
The tixBalloon widget provides context—sensitive on—screen help.

tixButtonBox
A convenience class for creating a box of button widgets.

tixCheckList
A subclass of tixTree that presents single— or multiple choices to the user in a
tree—like format.

tixComboBox
A combination of the listbox and entry widgets that allows the user to input an item
by typing or by selecting from a list of items.

tixControl
The tixControl widget allows the user to adjust a value using arrow buttons.

tixDirList
A directory selection widget that displays the file system as a cascading list.

tixDirSelectDialog
A dialog for selecting a directory. This widget is deprecated. Use

tk_chooseDirectory instead.

tixDirTree
A directory selection widget that displays the file system in a tree format.

tixExFileSelectBox
A widget for selecting a file. This widget is deprecated. Use tk_getOpenFile instead.

tixExFileSelectDialog
A dialog for selecting a file. This widget is deprecated. Use tk_getOpenFile instead.

tixFileEntry
A special entry widget that allows the user to choose a file by typing in its name or

by selecting from a file dialog.

tixFileSelectBox
A widget for selecting a file. This widget is deprecated. Use tk_getOpenFile instead.

tixFileSelectDialog
A dialog for selecting a file. This widget is deprecated. Use tk_getOpenFile instead.

About this Manual

tixLabelEntry
A convenience class for creating an entry with an associated label widget.

tixLabelFrame
A labeled frame widget for grouping together a set of related widgets.

tixListNoteBook
The tixListNoteBook widget allows the user to choose from a set of over—lapping
pages by selecting from a list box.

tixMeter
The tixMeter widget displays a bar graph to indicate progress.

tixNoteBook
The tixNoteBook widget allows the user to choose from a set of over-lapping pages
with a tabbed notebook metaphor.

tixOptionMenu
The tixOptionMenu widget allows the user to choose a value from a pop—up menu.

tixPanedWindow
The tixPanedWindow widgets allows the user to adjust the visible size of several
frame widgets with handle bars.

tixPopupMenu
The tixPopupMenu widget can be used to implement context—sensitive pop—up

menu.

tixScrolledHList
A tixHList widget with smart scrollbars. Like other Tix scrolled widgets, the scroll
bars can be displayed on an as—needed basis.

tixScrolledListBox
A Tk listbox widget with smart scrollbars.

tixScrolledText
A Tk text widget with smart scrollbars.

tixScrolledWindow
A Tk frame widget with smart scrollbars.

tixSelect
The tixSelect widget uses a set of buttons to present single— or multiple selection
options to the user.

tixStdButtonBox
A subclass of tixButtonBox that provides four standard buttons (OK, Apply, Cancel
Help) for Motif(TM)-like dialog boxes.

tixTree
A subclass of tixScrolledHList that supports expanding and collapsing of entries in
a hierarchical list.

About this Manual

DISPLAY ITEMS

Three Tix standard widgets tixGrjdixHList and_tixTList support the Display
Iltems mechanism. Display items are created by the widget command of these standard
widgets. You can customize the items using styles objects.

tixDisplayStyle
Create style objects to customize display items.

IMAGE TYPES

Tix provides two additional image types to the_Tk image framework.

compound
The_compound image type allows you to combine images, widgets, and text strings

into a single Tk image object.

ixma
The pixmap image type supports the XPM format.

OTHER COMMANDS

The following Tcl command are also included in the Tix library to perform various functions.

tixDestroy
Destroy Tix objects instances of classes defined by tixClass construct.

tixForm
A geometry manager based on attachment rules. This geometry manager is
deprecated. Use the Tk grid geometry manager instead.

tixMwm
A command to communicate with the Mwm, the Motif(TM) Window Manager.
Works on Unix only.

tix
The tix command controls the Tix application context.

tixGetBoolean
The tixGetBoolean command converts a string to a boolean value.

tixGetInt
The tixGetint command converts a string to a integer value.

tixUtils
The tixUtils manual page describes some utility Tix commands.

EXECUTABLE PROGRAM

tixwish
The tixwish program can be used to execute Tix—based applications. tixwish is

About this Manual

deprecated. You should use the standard wish program from Tk and access Tix via
the "package require Tix" command.

EXAMPLES

The following is an example script that uses a tixTree widget.

set tree [tixTree .1]
pack $tree —expand yes —fill both
for {set i O} {$i < 2} {incr i} {
$tree subwidget hlist add $i —itemtype imagetext \
—text "Folder $i" —image [tix getimage folder]
for {set j 0} {$j < 5} {incr j} {
$tree subwidget hlist add $i.$j —itemtype imagetext \
—text "File $i.$j" —image [tix getimage textfile]
}
}

$tree autosetmode

KEYWORDS

Tix, mega widgets

Chapter 2: Standard Widgets

tixGrid — Create and manipulate Tix Grid widgets

SYNOPSIS
tixGrid pathName ?options?
STANDARD OPTIONS

—background or —bg. background, Background
—borderWidth

—Cursor, cursor, Cursor
—font, font, Font

—foreground or —fg, foreground, Foreground
—height

—highlightColor

—highlightThickness

—relief. relief. Relief

—selectBackground

—selectForeground

—width

=xScrollCommand

=yScrollCommand

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —editdonecmd

Database Name: editDoneCmd

Database Class: EditDoneCmd
If non—empty, gives a Tcl command to be executed when the user has edited grid
cell. When this command is called, it is passed with two additional parameters: x y,
where (x,y) is the location of the cell that has just been edited.

Command-Line Name: —editnotifycmd

Database Name: editNotifyCmd

Database Class: EditNotifyCmd
If non—empty, gives a Tcl command to be executed when the user tries to edit a grid
cell. When this command is called, it is passed with two additional parameters: x y,
where (x,y,) is the location of the cell. This command should return a boolean value:
true indicates that the cells is editable and false otherwise.

Command-Line Name: —formatcmd
Database Name: formatCmd

#M-height
#M-width

About this Manual

Database Class: FormatCmd
If non—empty, gives a Tcl command to be executed when the grid cells need to be
formatted on the screen. Normally, this command calls the format widget command
(see below). When this command is called, it is passed with five additional
parameters: type x1 y1 x2 y2. type gives the logical type of the region in the grid. It
may be one of the following. x-region: the horizontal margin; y-region: the vertical
margin; s—region, the area where the the horizontal and vertical margins are joined;
main: all the cells that do not fall into the above three types. x1 y1 x2 y2 gives the
extent of the region that needs formatting.

Command-Line Name: —leftmargin

Database Name: leftMargin

Database Class: LeftMargin
In the number of cells, gives the width of vertical margin. A zero indicates that no
vertical should be drawn.

Command-Line Name: —selectmode

Database Name: selectMode

Database Class: SelectMode
Specifies one of several styles for manipulating the selection. The value of the option
may be arbitrary, but the default bindings expect it to be either single, browse,
multiple, or extended; the default value is single.

Command-Line Name: —selectunit
Database Name: selectUnit
Database Class: SelectUnit
Specifies the selection unit. Valid values are cell, column or row.

Command-Line Name: —topmargin

Database Name: topMargin

Database Class: TopMargin
In the number of cells, gives the height of horizontal margin. A zero indicates that no
horizontal should be drawn.

DESCRIPTION

The tixGrid command creates a hew window (given by the pathName argument) and makes
it into a tixGrid widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the tixGrid widget such as its
cursor and relief.

A Grid widget displays its contents in a two dimensional grid of cells. Each cell may contain
one Tix display item, which may be in text, graphics or other formats. See the
tixDisplayStyle manual page for more information about Tix display items. Individual cells,
or groups of cells, can be formatted with a wide range of attributes, such as its color, relief
and border.

WIDGET COMMAND

The tixGrid command creates a hew Tcl command whose name is the same as the path name
of the tixGrid widget's window. This command may be used to invoke various operations on
the widget. It has the following general form:

About this Manual

pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the tixGrid widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for tixGrid widgets:

pathName anchor option ?args ...?
Manipulates the anchor cell of the tixGrid widget. The anchor cell is the end of the
selection that is fixed while the user is dragging out a selection with the mouse.

pathName bdtype
TODO place holder

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixGrid command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list.) If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixGrid command.

pathName delete dim from ?to?
Dim may be row or column. If to is not given, deletes a single row (or column) at
the position from. If to is given, deletes the range of rows (or columns) from position
from through to.

pathName edit apply
If any cell is being edited, de—highlight the cell and applies the changes.

pathName edit set x y
Highlights the cell at (x,y) for editing, if the —editnotify command returns true for
this cell.

pathName entrycget x y option
Returns the current value of the configuration option given by option of the cell at
(x,y). Option may have any of the values accepted by the set widget command.

pathName entryconfigure x y ?option? ?value option value ...?
Query or modify the configuration options of the cell at (x,y). If no option is
specified, returns a list describing all of the available options for the cell (see
Tk_Configurelnfo for information on the format of this list.) If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified.) If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by

About this Manual

the set widget command.

pathName format
TODO place holder

pathName index
TODO place holder

pathName move dim from to offset
Dim may be row or column. Moves the the range of rows (or columns) from
position from through to by the distance indicated by offset. For example, move row
2 4 1 moves the rows 2,3,4 to rows 3,4,5.

pathName set x y ?—itemtype type? ?option value...?
Creates a new display item at the cell at (x,y). The optional —itemtype parameter
gives the type of the display item. An additional list of option—value pairs specify
options of the display item. If a display item already exists at this cell, the old item
will be deleted automatically.

pathName size dim index ?option value ...?
Queries or sets the size of the row or column given by dim and index. Dim may be
row or column. Index may be any hon—negative integer that gives the position of a
given row (or column). Index can also be the string default; in this case, this
command queries or sets the default size of all rows (or columns).

When no option-value pair is given, this command returns a list containing the
current size setting of the given row (or column). When option—value pairs are given,
the corresponding options of the size setting of the given row are changed.

Option may be one of the follwing:

—padO pixels
Specifies the paddings to the left or a column or the top of a row.

—padl pixels
Specifies the paddings to the right or a column or the bottom of a row.

—size val
Specifies the width of a column or the height of a row. Val may be: auto ——
the width of the column is set the the widest cell in the column; a valid Tk
screen distance unit (see Tk_GetPixels); or a real number following by the
word chars (e.g. 3.4chars) that sets the width of the column to the given
number of characters.

pathName unset x y
Clears the cell at (x,y) by removing its display item.

pathName xview
TODO place holder

pathName yview
TODO place holder

About this Manual

KEYWORDS

arid, spread shegetable

tixHList — Create and manipulate Tix Hierarchial List
widgets

SYNOPSIS

tixHList pathName ?options?

STANDARD OPTIONS
—background or —bg. background, Background
—borderWidth
—cursor. cursor, Cursor
—font. font. Font

—foreground or —fg, foreground, Foreground
—height

—highlightColor —highlightThickness

—relief. relief. Relief

—selectBackaground

—selectForeground

—width

=xScrollCommand

—yScrollCommand

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —browsecmd

Database Name: browsecmd

Database Class: BrowseCmd
Specifies a TCL command to be executed when the user browses through the entries
in the HList widget.

Command-Line Name: —columns

Database Name: columns

Database Class: Columns
Specifies the number of columns in this HList widget. This option can only be set
during the creation of the HList widget and cannot be changed subsequently.

Command-Line Name: —command
Database Name: command
Database Class: Command

#M-height
#M-highlightColor -highlightThickness
#M-width

About this Manual

Specifies the TCL command to be executed when the user invokes a list entry in the
HList widget. Normally the user invokes a list entry by double—clicking it or
pressing the Return key.

Command-Line Name: —drawbranch

Database Name: drawBranch

Database Class: DrawBranch
A Boolean value to specify whether branch line should be drawn to connect list
entries to their parents.

Command-Line Name: —foreground or —fg
Database Name: foreground
Database Class: Foreground
[OBSOLETE] Specifies the default foreground color for the list entries.

Command-Line Name: —gap

Database Name: gap

Database Class: Gap
[OBSOLETE] The default distance between the bitmap/image and the text in list
entries.

Command-Line Name: —header

Database Name: header

Database Class: Header
A Boolean value specifying whether headers should be displayed for this HList
widget (see the header widget command below).

Command-Line Name: —height
Database Name: height
Database Class: Height
Specifies the desired height for the window in number of characters.

Command-Line Name: —indent

Database Name: indent

Database Class: Indent
Specifies the amount of horizontal indentation between a list entry and its children.
Must be a valid screen distance value.

Command-Line Name: —indicator

Database Name: indicator

Database Class: Indicator
Specifies whether the indicators should be displayed inside the HList widget. See the
indicator widget command below.

Command-Line Name: —indicatorcmd

Database Name: indicatorCmd

Database Class: IndicatorCmd
Specifies a TCL command to be executed when the user manipulates the indicator of
an HList entry. The —indicatorcmd is triggered when the user press or releases the
mouse button over the indicator in an HList entry. By default the TCL command
specified by —indicatorcmd is executed with one additional argument, the entryPath
of the entry whose indicator has been triggered. Additional information about the
event can be obtained by the tixEvent command.

About this Manual

Command-Line Name: —itemtype

Database Name: itemType

Database Class: ltemType
Specifies the default type of display item for this HList widget. When you call the
add and addchild widget commands, display items of this type will be created if the
—itemtype option is not specified .

Command-Line Name: —padx
Database Name: padX
Database Class: Pad
[OBSOLETE] The default horizontal padding for list entries.

Command-Line Name: —padx
Database Name: padY
Database Class: Pad
[OBSOLETE] The default vertical padding for list entries.

Command-Line Name: —selectbackground
Database Name: selectBackground
Database Class: SelectBackground
Specifies the background color for the selected list entries.

Command-Line Name: —selectborderwidth

Database Name: selectBorderWidth

Database Class: BorderWidth
Specifies a non—negative value indicating the width of the 3-D border to draw
around selected items. The value may have any of the forms acceptable to
Tk_GetPixels.

Command-Line Name: —selectforeground
Database Name: selectForeground
Database Class: SelectForeground
Specifies the foreground color for the selected list entries.

Command-Line Name: —selectmode

Database Name: selectMode

Database Class: SelectMode
Specifies one of several styles for manipulating the selection. The value of the option
may be arbitrary, but the default bindings expect it to be either single, browse,
multiple, or extended; the default value is single.

Command-Line Name: —sizecmd

Database Name: sizeCmd

Database Class: SizeCmd
Specifies a TCL script to be called whenever the HList widget changes its size. This
command can be useful to implement "user scroll bars when needed" features.

Command-Line Name: —separator

Database Name: separator

Database Class: Separator
Specifies the character to used as the separator character when intepreting the
path—-names of list entries. By default the character "." is used.

About this Manual

Command-Line Name: —width
Database Name: width
Database Class: Width
Specifies the desired width for the window in characters.

DESCRIPTION

The tixHList command creates a new window (given by the pathName argument) and makes
it into a HList widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the HList widget such as its
cursor and relief.

The HList widget can be used to display any data that have a hierarchical structure, for
example, file system directory trees. The list entries are indented and connected by branch
lines according to their places in the hierachy.

Each list entry is identified by an entryPath. The entryPath is a sequence of entry

names separated by the separator charactor (specified by the —separator option). An entry
name can be any string that does not contain the separator charactor, or it can be the a string
that contains only one separator charactor.

For example, when "." is used as the separator charactor, "one.two.three" is the entryPath for
a list entry whose parent is "one.two", whose parent is "one", which is a toplevel entry (has
no parents).

Another examples: ".two.three" is the entryPath for a list entry whose parent is ".two", whose

nn

parent is ".", which is a toplevel entry.

DISPLAY ITEMS

Each list entry in an HList widget is associated with a display item. The display item
determines what visual information should be displayed for this list entry. Please see the
tixDisplayStyle manual page for a list of all display items. When a list entry is created by the
add or addchild widget commands, the type of its display item is determined by the
—itemtype option passed to these commands. If the —itemtype is omitted, then by default the
type specified by this HList widget's —itemtype option is used.

WIDGET COMMAND

The tixHList command creates a new Tcl command whose hame is the same as the path
name of the HList widget's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the HList widget's path name.
Option and the args determine the exact behavior of the command. The following commands
are possible for HList widgets:

pathName add entryPath ?option value ...?
Creates a new list entry with the pathname entryPath. A list entry must be created
after its parent is created (unless this entry is a top—level entry, which has no parent).
This command returns the entryPath of the newly created list entry. The following

About this Manual

configuration options can be given to configure the list entry:

—at position
Insert the new list at the position given by position. position must be a valid
integer. the Position 0 indicates the first position, 1 indicates the second
position, and so on.

—after afterWhich
Insert the new list entry after the entry identified by afterWhich.
afterWwhich must be a valid list entry and it mush have the same parent as the
new list entry

—before beforeWhich
Insert the new list entry before the entry identified by beforeWhich.
beforeWhich must be a valid list entry and it mush have the same parent as
the new list entry

—data string
Specifies a string to associate with this list entry. This string can be queried
by the info widget command. The application programmer can use the
—data option to associate the list entry with the data it represents.

—itemtype type
Specifies the type of display item to be display for the new list entry.
type must be a valid display item type. Currently the available display item
types are imagetext, text, and window. If this option is not specified, then
by default the type specified by this HList widget's —itemtype option is
used.

—state
Specifies whether this entry can be selected or invoked by the user. Must be
either normal or disabled.

The add widget command accepts additional configuration options to configure the
display item associated with this list entry. The set of additional configuration
options depends on the type of the display item given by the —itemtype option.
Please see the tixDisplayStyle manual page for a list of the configuration options for
each of the display item types.

pathName addchild parentPath ?option value ... ?
Adds a new child entry to the children list of the list entry identified by parentPath.
Or, if parentPath is set to be the empty string, then creates a new toplevel entry. The
name of the new list entry will be a unigue name automatically generated by the
HList widget. Usually if parentPath is foo, then the entryPath of the new entry will
be foo.1, foo.2, ... etc. This command returns the entryPath of the newly created list
entry. option can be any option for the add widget command.

pathName anchor set entryPath
Sets the anchor to the list entry identified by entryPath. The anchor is the end of the
selection that is fixed while the user is dragging out a selection with the mouse.

pathName anchor clear

About this Manual

Removes the anchor, if any, from this HList widget. This only removes the
surrounding highlights of the anchor entry and does not affect its selection status.

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixHList command.

pathName column width col ?—char? ?width?
Querys or sets the width of a the column col in the HList widget. The value of col is
zero—based: 0 stands for the first column, 1 stands for the second, and so on. If no
further parameters are given, returns the current width of this column (in number of
pixels). Additional parameters can be given to set the width of this column:

pathName column width col {}
An empty string indicates that the width of the column should be just wide enough to
display the widest element in this column. In this case, the width of this column may
change as a result of the elements in this column changing their sizes.

pathName column width col width
width must be in a form accepted by Tk_GetPixels.

pathName column width col —char nChars
The width is set to be the average width occupied by nChars number of characters of
the font specified by the —font option of this HList widget.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixHList command.

pathName delete option ?entryPath?
Delete one or more list entries. option may be one of the following:

all
Delete all entries in the HList. In this case the entryPath does not need to be
specified.
entry
Delete the entry specified by entryPath and all its offsprings, if any.
offsprings
Delete all the offsprings, if any, of the entry specified by entryPath.
However, entryPath itself is not deleted.
siblings

Delete all the list entries that share the same parent with the entry specified
by entryPath. However, entryPath itself is not deleted.

About this Manual

pathName dragsite set entryPath
Sets the dragsite to the list entry identified by entryPath. The dragsite is used to
indicate the source of a drag—and-drop action. Currently drag—and-drop
functionality has not been implemented in Tix yet.

pathName dragsite clear
Remove the dragsite, if any, from the this HList widget. This only removes the
surrounding highlights of the dragsite entry and does not affect its selection status.

pathName dropsite set entryPath
Sets the dropsite to the list entry identified by entryPath. The dropsite is used to
indicate the target of a grag—and-drop action. Currently drag—and—drop functionality
has not been implemented in Tix yet.

pathName dropsite clear
Remove the dropsite, if any, from the this HList widget. This only removes the
surrounding highlights of the dropsite entry and does not affect its selection status.

pathName entrycget entryPath option
Returns the current value of the configuration option given by option for the entry
indentfied by entryPath. Option may have any of the values accepted by the
add widget command.

pathName entryconfigure entryPath ?option? ?value option value ...?
Query or modify the configuration options of the list entry indentfied by entryPath.
If no option is specified, returns a list describing all of the available options for
entryPath(see_Tk_Configurelnfo for information on the format of this list.) If
option is specified with no value, then the command returns a list describing the one
named option (this list will be identical to the corresponding sublist of the value
returned if no option is specified). If one or more option—value pairs are specified,
then the command modifies the given option(s) to have the given value(s); in this
case the command returns an empty string. Option may have any of the values
accepted by the add or addchild widget command. The exact set of options depends
on the value of the —itemtype option passed to the the add or addchild widget
command when this list entry is created.

pathName header option col ?args ...?
Manipulates the header items of this HList widget. If the —header option of this
HList widget is set to true, then a header item is displayed at the top of each column.
The col argument for this command must be a valid integer. 0 indicates the first
column, 1 the second column, ... and so on. This command supports the following
options:

pathName header cget col option
If the col-th column has a header display item, returns the value of the
specified option of the header item. If the header doesn't exist, returns an
error.

pathName header configure col ?option? ?value option value ...?
Query or modify the configuration options of the header display item of the
col-th column. The header item must exist, or an error will result. If no
option is specified, returns a list describing all of the available options for
the header display item (see Tk_Configurelnfo for information on the

About this Manual

format of this list.) If option is specified with no value, then the command
returns a list describing the one named option (this list will be identical to
the corresponding sublist of the value returned if no option is specified). If
one or more option—value pairs are specified, then the command modifies
the given option(s) to have the given value(s); in this case the command
returns an empty string. Option may have any of the values accepted by the
header create widget command. The exact set of options depends on the
value of the —itemtype option passed to the the header create widget
command when this display item was created.

pathName header create col ?-itemtype type? ?option value ...?
Creates a new display item as the header for the col-th column. If an header
display item already exists for this column, it will be replaced by the new
item. An optional parameter —itemtype can be used to specify what type of
display item should be created. If the —itemtype is not given, then by default
the type specified by this HList widget's —itemtype option is used.
Additional parameters, in option—value pairs, can be passed to configure the
appearance of the display item. Each option-value pair must be a valid
option for this type of display item or one of the following:

—borderwidth
Specifies the border width of this header item.

—headerbackground
Specifies the background color of this header item.

-relief
Specifies the relief type of the border of this header item.

pathName header delete col
Deletes the header display item for the col-th column.

pathName header exists col
Return true if an header display item exists for the col-th column; return
false otherwise.

pathName header size entryPath
If an header display item exists for the col-th column , returns its size in a
two element list of the form {width height}; returns an error if the header
display item does not exist.

pathName hide option ?entryPath?
Makes some of entries invisible invisible without deleting them. Option can be one
of the following:

entry
Hides the list entry identified by entryPath.

Currently only the entry option is supported. Other options will be added in the next
release.

pathName indicator option entryPath ?args ...?

About this Manual

Manipulates the indicator on the list entries. An indicator is usually a small display
item (such as an image) that is displayed to the left to an entry to indicate the status
of the entry. For example, it may be used to indicator whether a directory is opened
or closed. option can be one of the following:

pathName indicator cget entryPath option
If the list entry given by entryPath has an indicator, returns the value of the
specified option of the indicator. If the indicator doesn't exist, returns an
error.

pathName indicator configure entryPath ?option? ?value option value ...?
Query or modify the configuration options of the indicator display item of
the entry specified by entryPath. The indicator item must exist, or an error
will result. If no option is specified, returns a list describing all of the
available options for the indicator display item (see Tk_Configurelnfo for
information on the format of this list). If option is specified with no value,
then the command returns a list describing the one named option (this list
will be identical to the corresponding sublist of the value returned if no
option is specified). If one or more option—value pairs are specified, then the
command modifies the given option(s) to have the given value(s); in this
case the command returns an empty string. Option may have any of the
values accepted by the indicator create widget command. The exact set of
options depends on the value of the —itemtype option passed to the the
indicator create widget command when this display item was created.

pathName indicator create entryPath ?-itemtype type? ?option value ...?
Creates a new display item as the indicator for the entry specified by
entryPath. If an indicator display item already exists for this entry, it will be
replaced by the new item. An optional parameter —itemtype can be used to
specify what type of display item should be created. If the —itemtype is not
given, then by default the type specified by this HList widget's
—itemtype option is used. Additional parameters, in option—value pairs, can
be passed to configure the appearance of the display item. Each
option—value pair must be a valid option for this type of display item.

pathName indicator delete entryPath
Deletes the indicator display item for the entry given by entryPath.

pathName indicator exists entryPath
Return true if an indicator display item exists for the entry given by
entryPath; return false otherwise.

pathName indicator size entryPath
If an indicator display item exists for the entry given by entryPath, returns
its size in a two element list of the form {width height}; returns an error if
the indicator display item does not exist.

pathName info option arg ...
Query information about the HList widget. option can be one of the following:

pathName info anchor
Returns the entryPath of the current anchor, if any, of the HList widget. If
the anchor is not set, returns the empty string.

About this Manual

pathName info bbox entryPath
Returns a list of four numbers describing the visible bounding box of the
entry given entryPath. The first two elements of the list give the x and y
coordinates of the upper-left corner of the screen area covered by the entry
(specified in pixels relative to the widget) and the last two elements give the
lower-right corner of the area, in pixels. If no part of the entry given by
index is visible on the screen then the result is an empty string; if the entry is
partially visible, the result gives the only the visible area of the entry.

pathName info children ?entryPath?
If entrpyPath is given, returns a list of the entryPath's of its children entries.
Otherwise returns a list of the toplevel entryPath's.

pathName info data ?entryPath?
Returns the data associated with entryPath.

pathName info dragsite
Returns the entryPath of the current dragsite, if any, of the HList widget. If
the dragsite is not set, returns the empty string.

pathName info dropsite
Returns the entryPath of the current dropsite, if any, of the HList widget. If
the dropsite is not set, returns the empty string.

pathName info exists entryPath
Returns a boolean value indicating whether the list entry entrpyPath exists.

pathName info hidden entryPath
Returns a boolean value indicating whether the list entry entrpyPath is
hidden or not.

pathName info next entryPath
Returns the entryPath of the list entry, if any, immediately below this list
entry. If this entry is already at the bottom of the HList widget, returns an
empty string.

pathName info parent entryPath
Returns the name of the parent of the list entry identified by entrpyPath. If
entrpyPath is a toplevel list entry, returns the empty string.

pathName info prev entryPath
Returns the entryPath of the list entry, if any, immediately above this list
entry. If this entry is already at the top of the HList widget, returns an empty
string.

pathName info selection
Returns a list of selected entries in the HList widget. If no entries are selectd,
returns an empty string.

pathName item option ?args ...?
Creates and configures the display items at individual columns the entries. The form
of additional of arguments depends on the choice of option:

About this Manual

pathName item cget entryPath col option
Returns the current value of the configure option of the display item at the
column designated by col of the entry specified by entryPath.

pathName item configure entryPath col ?option? ?value option value ...?
Query or modify the configuration options of the display item at the column
designated by col of the entry specified by entryPath. If no option is
specified, returns a list describing all of the available options for
entryPath(see_Tk_Configurelnfo for information on the format of this list).
If option is specified with no value, then the command returns a list
describing the one named option (this list will be identical to the
corresponding sublist of the value returned if no option is specified). If one
or more option—value pairs are specified, then the command modifies the
given option(s) to have the given value(s); in this case the command returns
an empty string. Option may have any of the values accepted by the item
create widget command. The exact set of options depends on the value of
the —itemtype option passed to the the item create widget command when
this display item was created.

pathName item create entryPath col ?-itemtype type? ?option value ...?
Creates a new display item at the column designated by col of the entry
specified by entryPath. An optional parameter —itemtype can be used to
specify what type of display items should be created. If the —itemtype is not
specified, then by default the type specified by this HList widget's
—itemtype option is used. Additional parameters, in option—value pairs, can
be passed to configure the appearance of the display item. Each option—
value pair must be a valid option for this type of display item.

pathName item delete entryPath col
Deletes the display item at the column designated by col of the entry
specified by entryPath.

pathName item exists entryPath col
Returns true if there is a display item at the column designated by col of the
entry specified by entryPath; returns false otherwise.

pathName nearest y
Given a y—coordinate within the HList window, this command returns the entryPath
of the (visible) HList element nearest to that y—coordinate.

pathName see entryPath
Adjust the view in the HList so that the entry given by entryPath is visible. If the
entry is already visible then the command has no effect; if the entry is near one edge
of the window then the HList scrolls to bring the element into view at the edge;
otherwise the HList widget scrolls to center the entry.

pathName selection option arg ...
This command is used to adjust the selection within a HList widget. It has several
forms, depending on option:

pathName selection clear ?from? ?to?
When no extra arguments are given, deselects all of the list entrie(s) in this
HList widget. When only from is given, only the list entry identified by

About this Manual

from is deselected. When both from and to are given, deselects all of the list
entrie(s) between between from and to, inclusive, without affecting the
selection state of entries outside that range.

pathName selection get
This is an alias for the info selection widget command. ,

pathName selection includes entryPath
Returns 1 if the list entry indicated by entryPath is currently selected; returns
0 otherwise.

pathName selection set from ?to?
Selects all of the list entrie(s) between between from and to, inclusive,
without affecting the selection state of entries outside that range. When only
from is given, only the list entry identified by from is selected.

pathName show option ?entryPath?
Show the entries that are hidden by the hide command, option can be one of the
following:

entry
Shows the list entry identified by entryPath.

Currently only the entry option is supported. Other options will be added in future
releases.

pathName xview args
This command is used to query and change the horizontal position of the information
in the widget's window. It can take any of the following forms:

pathName xview
Returns a list containing two elements. Each element is a real fraction
between 0 and 1; together they describe the horizontal span that is visible in
the window. For example, if the first element is .2 and the second element is
.6, 20% of the HList entry is off-screen to the left, the middle 40% is visible
in the window, and 40% of the entry is off-screen to the right. These are the
same values passed to scrollbars via the —xscrollcommand option.

pathName xview entryPath
Adjusts the view in the window so that the list entry identified by
entryPath is aligned to the left edge of the window.

pathName xview moveto fraction
Adjusts the view in the window so that fraction of the total width of the
HList is off-screen to the left. fraction must be a fraction between 0 and 1.

pathName xview scroll number what
This command shifts the view in the window left or right according to
number and what. Number must be an integer. What must be either units or
pages or an abbreviation of one of these. If what is units, the view adjusts
left or right by number character units (the width of the 0 character) on the
display; if it is pages then the view adjusts by number screenfuls. If
number is negative then characters farther to the left become visible; if it is

About this Manual

positive then characters farther to the right become visible.

pathName yview ?args?

BINDINGS
[1]

[2]

[3]

This command is used to query and change the vertical position of the entries in the
widget's window. It can take any of the following forms:

pathName yview
Returns a list containing two elements, both of which are real fractions
between 0 and 1. The first element gives the position of the list element at
the top of the window, relative to the HList as a whole (0.5 means it is
halfway through the HList, for example). The second element gives the
position of the list entry just after the last one in the window, relative to the
HList as a whole. These are the same values passed to scrollbars via the
—yscrollcommand option.

pathName yview entryPath
Adjusts the view in the window so that the list entry given by entryPath is
displayed at the top of the window.

pathName yview moveto fraction
Adjusts the view in the window so that the list entry given by
fraction appears at the top of the window. Fraction is a fraction between 0
and 1; O indicates the first entry in the HList, 0.33 indicates the entry
one-third the way through the HList, and so on.

pathName yview scroll number what
This command adjust the view in the window up or down according to
number and what. Number must be an integer. What must be either units or
pages. If what is units, the view adjusts up or down by number lines; if it is
pages then the view adjusts by number screenfuls. If number is negative then
earlier entries become visible; if it is positive then later entries become
visible.

If the —selectmode is "browse", when the user drags the mouse pointer over the list
entries, the entry under the pointer will be highlighted and the

—browsecmd procedure will be called with one parameter, the entryPath of the
highlighted entry. Only one entry can be highlighted at a time. The

—command procedure will be called when the user double—clicks on a list entry.

If the —selectmode is "single", the entries will only be highlighted by mouse
<ButtonRelease-1> events. When a new list entry is highlighted, the

—browsecmd procedure will be called with one parameter indicating the highlighted
list entry. The —command procedure will be called when the user double—clicks on a
list entry.

If the —selectmode is "multiple”, when the user drags the mouse pointer over the list
entries, all the entries under the pointer will be highlighted. However, only a

About this Manual

contiguous region of list entries can be selected. When the highlighted area is
changed, the —browsecmd procedure will be called with an undefined parameter. It
is the responsibility of the —browsecmd procedure to find out the exact highlighted
selection in the HList. The —command procedure will be called when the user
double—clicks on a list entry.

[4]
If the —selectmode is "extended", when the user drags the mouse pointer over the list
entries, all the entries under the pointer will be highlighted. The user can also make
disjointed selections using <Control-ButtonPress—1>. When the highlighted area is
changed, the —browsecmd procedure will be called with an undefined parameter. It
is the responsibility of the —browsecmd procedure to find out the exact highlighted
selection in the HList. The —command procedure will be called when the user
double—clicks on a list entry.

[5]
Arrow key bindings: <Up> arrow key moves the anchor point to the item right on
top of the current anchor item. <Down> arrow key moves the anchor point to the
item right below the current anchor item. <Left> arrow key moves the anchor to the
parent item of the current anchor item. <Right> moves the anchor to the first child of
the current anchor item. If the current anchor item does not have any children, moves
the anchor to the item right below the current anchor item.

EXAMPLE

This example demonstrates how to use an HList to store a file directory structure and respond
to the user's browse events:

set h [tixHList .h —separator "/" —browsecmd browse \
—selectmode single —itemtype text]

$h add / —text /

$h add /home —text /nome

$h add /home/ioi —text /home/ioi

$h add /home/foo —text /home/foo

$h add /usr —text /usr

$h add /usr/lib —text /usr/lib

pack $h

proc browse {file} {
puts "$file browsed"
}

BUGS

The fact that the display item at column O is implicitly associated with the whole entry is
probably a design bug. This was done for backward compatibility purposes. The result is that
there is a large overlap between the item command and the add, addchild, entrycget and
entryconfigure commands. Whenever multiple columns exist, the programmer should use
ONLY the item command to create and configure the display items in each column; the add,
addchild, entrycget and entryconfigure should be used ONLY to create and configure
entries.

About this Manual

KEYWORDS

hierarchical listboxwidget

tixinputOnly — Create and manipulate TIX InputOnly widgets

SYNOPSIS

tixInputOnly pathName ?options?

STANDARD OPTIONS

—cursor —width
—height

WIDGET-SPECIFIC OPTIONS

TixInputOnly does not have any widget specific options.

DESCRIPTION

The tixInputOnly command creates a new window (given by the pathName argument) and
makes it into a tixInputOnly widget. Additional options, described above, may be specified
on the command line or in the option database to configure aspects of the tixinputOnly such
as its cursor or width.

TixInputOnly widgets are not visible to the user. The only purpose of
TixInputOnly widgets are to accept inputs from the user, which can be done with the
bind command.

WIDGET COMMAND

The tixInputOnly command creates a new Tcl command whose name is the same as the path
name of the tixinputOnly's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the InputOnly widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for tixInputOnly widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixInputOnly command.

#M-cursor -width
#M-height

About this Manual

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixInputOnly command.

BINDINGS

tixInputOnly widgets have no default bindings.

BUGS

tixInputOnly is currently implemented for the Unix version of Tix only.

KEYWORDS

input only, invisible widget

tixNBFrame — Create and manipulate Tix NoteBook Frame
widgets

SYNOPSIS

tixNBFrame pathName ?options?

STANDARD OPTIONS
—background or —bg. background, Background
—borderWidth
—cursor. cursor, Cursor
—disabledForeground
—font. font. Font
—foreground or —fg, foreground, Foreground
—height
—highlightColor

—highlightThickness
—relief, relief, Relief

—takeFocus
—width

#M-height
#M-width

About this Manual

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —backpagecolor

Database Name: backPageColor

Database Class: BackPageColor
Specifies the color for the extra space on the row of tabs which is not covered by any
page tabs.

Command-Line Name: —focuscolor
Database Name: focusColor
Database Class: FocusColor
Specifies the color for the focus highlight.

Command-Line Name: —-inactivebackground

Database Name: inactiveBackground

Database Class: InactiveBackground
Specifies the color for the inactive tabs (the active tab always have the same
background color as the notebook).

Command-Line Name: —tabpadx
Database Name: tabPadX
Database Class: Pad
The horizontal padding around the text labels on the page tabs.

Command-Line Name: —tabpady
Database Name: tabPadY
Database Class: Pad
The vertical padding around the text labels on the page tabs.

DESCRIPTION

The NBFrame widget is used privately inside the TixNoteBook widget to display the page
tabs. The application programmer should never create a NBFrame widget directly. The sole
purpose of this maual page is to describe the options that can be used to configure the
appearance of the TixNoteBook widget.

The name of the NBFrame subwidget inside the TixNoteBook widget is called nbframe. It
can be accessed using the subwidget command of the TixNoteBook widget or the
—options switch. See below for an example.

EXAMPLE

set nb [tixNoteBook .nb —options {
nbframe.BackPageColor gray60
1]

$nb subwidget nbframe config —font fixed

$nb add pagel —label "Pagel"
set page [$nb subwidget pagel]
button $page.bl

pack $page.bl

pack $nb —expand yes —fill both

About this Manual

KEYWORDS

notebook widget

tixTList — Create and manipulate Tix Tabular List widgets

SYNOPSIS

tixTList pathName ?options?

STANDARD OPTIONS
—background or —bg. background, Background
—borderWidth
—cursor. cursor, Cursor
—font. font. Font

—foreground or —fg, foreground, Foreground
—height

—highlightColor —highlightThickness

—relief. relief. Relief

—selectBackaground

—selectForeground

—width

=xScrollCommand

—yScrollCommand

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —browsecmd

Database Name: browsecmd

Database Class: BrowseCmd
Specifies a TCL command to be executed when the user browses through the entries
in the TList widget.

Command-Line Name: —command

Database Name: command

Database Class: Command
Specifies the TCL command to be executed when the user invokes a list entry in the
TList widget. Normally the user invokes a list entry by double—clicking it or pressing
the Return key.

Command-Line Name: —foreground
Database Name: foreground
Database Class: Foreground
Specifies the default foreground color for the list entries.

#M-height
#M-highlightColor -highlightThickness
#M-width

About this Manual

Command-Line Name: —height
Database Name: height
Database Class: Height
Specifies the desired height for the window in number of characters.

Command-Line Name: —itemtype

Database Name: itemType

Database Class: ltemType
Specifies the default type of display item for this TList widget. When you call the
insert widget commands, display items of this type will be created if the
—itemtype option is not specified .

Command-Line Name: —orient

Database Name: orient

Database Class: Orient
Specifies the order of tabularizing the list entries. When set to "vertical", the entries
are arranged in a column, from top to bottom. If the entries cannot be contained in
one column, the remaining entries will go to the next column, and so on. When set to
"horizontal", the entries are arranged in a row, from left to right. If the entries
cannot be contained in one row, the remaining entries will go to the next row, and so
on.

Command-Line Name: —padx
Database Name: padX
Database Class: Pad
The default horizontal padding for list entries.

Command-Line Name: —padx
Database Name: padY
Database Class: Pad
The default vertical padding for list entries.

Command-Line Name: —selectbackground
Database Name: selectBackground
Database Class: SelectBackground
Specifies the background color for the selected list entries.

Command-Line Name: —selectborderwidth

Database Name: selectBorderWidth

Database Class: BorderWidth
Specifies a non—-negative value indicating the width of the 3-D border to draw
around selected items. The value may have any of the forms acceptable to
Tk_GetPixels.

Command-Line Name: —selectforeground
Database Name: selectForeground
Database Class: SelectForeground
Specifies the foreground color for the selected list entries.

Command-Line Name: —selectmode
Database Name: selectMode
Database Class: SelectMode

About this Manual

Specifies one of several styles for manipulating the selection. The value of the option
may be arbitrary, but the default bindings expect it to be either single, browse,
multiple, or extended; the default value is single.

Command-Line Name: —sizecmd

Database Name: sizeCmd

Database Class: SizeCmd
Specifies a TCL script to be called whenever the TList widget changes its size. This
command can be useful to implement "user scroll bars when needed" features.

Command-Line Name: —state

Database Name: state

Database Class: State
Specifies whether the TList command should react to user actions. When set to
"normal”, the TList reacts to user actions in the normal way. When set to
"disabled", the TList can only be scrolled, but its entries cannot be selected or
activated.

Command-Line Name: —width
Database Name: width
Database Class: Width
Specifies the desired width for the window in characters.

DESCRIPTION

The tixTList command creates a new window (given by the pathName argument) and makes
it into a TList widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the TList widget such as its
cursor and relief.

The TList widget can be used to display data in a tabular format. The list entries of a TList
widget are similar to the entries in the Tk listbox widget. The main differences are (1) the
TList widget can display the list entries in a two dimensional format and (2) you can use
graphical images as well as multiple colors and fonts for the list entries.

Each list entry is identified by an index, which can be in the following forms:

number
An integer that indicates the position of the entry in the list. 0 means the first
position, 1 means the second position, and so on.

end
Indicates the end of the listbox. For some commands this means just after the last
entry; for other commands it means the last entry.

@x,y
Indicates the element that covers the point in the listbox window specified by x and y
(in pixel coordinates). If no element covers that point, then the closest element to that
point is used.

About this Manual

DISPLAY ITEMS

Each list entry in an TList widget is associated with a display item. The display item
determines what visual information should be displayed for this list entry. Please see the
tixDisplayStyle manual page for a list of all display items.

When a list entry is created by the insert command, the type of its display item is determined
by the —itemtype option passed to these commands. If the —itemtype is omitted, then by
default the type specified by this TList widget's —itemtype option is used.

WIDGET COMMAND

The tixTList command creates a new Tcl command whose name is the same as the path
name of the TList widget's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the TList widget's path name.
Option and the args determine the exact behavior of the command. The following commands
are possible for TList widgets:

pathName anchor set index
Sets the anchor to the list entry identified by index. The anchor is the end of the
selection that is fixed while dragging out a selection with the mouse.

pathName anchor clear
Removes the anchor, if any, from this TList widget. This only removes the
surrounding highlights of the anchor entry and does not affect its selection status.

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixTList command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixTList command.

pathName delete from ?to?
Deletes one or more list entries between the two entries specified by the indices
from and to. If to is not specified, deletes the single entry specified by from.

pathName dragsite set index
Sets the dragsite to the list entry identified by index. The dragsite is used to indicate
the source of a drag—and—drop action. Currently drag—and—drop functionality has
not been implemented in Tix yet.

About this Manual

pathName dragsite clear
Remove the dragsite, if any, from the this TList widget. This only removes the
surrounding highlights of the dragsite entry and does not affect its selection status.

pathName dropsite set index
Sets the dropsite to the list entry identified by index. The dropsite is used to indicate
the target of a grag—and—drop action. Currently drag—and—drop functionality has not
been implemented in Tix yet.

pathName dropsite clear
Remove the dropsite, if any, from the this TList widget. This only removes the
surrounding highlights of the dropsite entry and does not affect its selection status.

pathName entrycget index option
Returns the current value of the configuration option given by option for the entry
indentfied by index. Option may have any of the values accepted by the
insert widget command.

pathName entryconfigure index ?option? ?value option value ...?
Query or modify the configuration options of the list entry indentfied by index. If no
option is specified, returns a list describing all of the available options for index (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given option(s) to have the given value(s); in this case the command
returns an empty string. Option may have any of the values accepted by the
insert widget command. The exact set of options depends on the value of the
—itemtype option passed to the the insert widget command when this list entry is
created.

pathName insert index ?option value ...?
Creates a new list entry at the position indicated by index. The following
configuration options can be given to configure the list entry:

—itemtype type
Specifies the type of display item to be display for the new list entry.
type must be a valid display item type. Currently the available display item
types are_image, imagetext, text, and window. If this option is not specified,
then by default the type specified by this TList widget's —itemtype option is
used.

—state
Specifies whether this entry can be selected or invoked by the user. Must be
either normal or disabled.

The insert widget command accepts additional configuration options to configure
the display item associated with this list entry. The set of additional configuration
options depends on the type of the display item given by the —itemtype option.
Please see the tixDisplayStyle manual page for a list of the configuration options for
each of the display item types.

pathName info option arg ...

About this Manual

Query information about the TList widget. option can be one of the following:

pathName info anchor index
; Returns the index of the current anchor, if any, of the TList widget. If the
anchor is not set, returns the empty string.

pathName info dragsite index
Returns the index of the current dragsite, if any, of the TList widget. If the
dragsite is not set, returns the empty string.

pathName info dropsite index
Returns the index of the current dropsite, if any, of the TList widget. If the
dropsite is not set, returns the empty string.

pathName info selection
Returns a list of selected elements in the TList widget. If no entries are
selectd, returns an empty string.

pathName nearest x y

Given an (x,y) coordinate within the TList window, this command returns the index
of the TList element nearest to that coordinate.

pathName see index
Adjust the view in the TList so that the entry given by index is visible. If the entry is
already visible then the command has no effect; if the entry is near one edge of the
window then the TList scrolls to bring the element into view at the edge; otherwise
the TList widget scrolls to center the entry.

pathName selection option arg ...

This command is used to adjust the selection within a TList widget. It has several
forms, depending on option:

pathName selection clear ?from? ?to?
When no extra arguments are given, deselects all of the list entrie(s) in this
TList widget. When only from is given, only the list entry identified by
from is deselected. When both from and to are given, deselects all of the list
entrie(s) between between from and to, inclusive, without affecting the
selection state of entries outside that range.

pathName selection includes index

Returns 1 if the list entry indicated by index is currently selected; returns 0O
otherwise.

pathName selection set from ?to?
Selects all of the list entrie(s) between between from and to, inclusive,
without affecting the selection state of entries outside that range. When only
from is given, only the list entry identified by from is selected.

pathName xview args
This command is used to query and change the horizontal position of the information
in the widget's window. It can take any of the following forms:

pathName xview

About this Manual

Returns a list containing two elements. Each element is a real fraction
between 0 and 1; together they describe the horizontal span that is visible in
the window. For example, if the first element is .2 and the second element is
.6, 20% of the TList entry is off-screen to the left, the middle 40% is visible
in the window, and 40% of the entry is off-screen to the right. These are the
same values passed to scrollbars via the —xscrollcommand option.

pathName xview index
Adjusts the view in the window so that the list entry identified by index is
aligned to the left edge of the window.

pathName xview moveto fraction
Adjusts the view in the window so that fraction of the total width of the
TList is off-screen to the left. fraction must be a fraction between 0 and 1.

pathName xview scroll number what
This command shifts the view in the window left or right according to
number and what. Number must be an integer. What must be either units or
pages or an abbreviation of one of these. If what is units, the view adjusts
left or right by number character units (the width of the 0 character) on the
display; if it is pages then the view adjusts by number screenfuls. If
number is negative then characters farther to the left become visible; if it is
positive then characters farther to the right become visible.

pathName yview ?args?
This command is used to query and change the vertical position of the entries in the
widget's window. It can take any of the following forms:

pathName yview
Returns a list containing two elements, both of which are real fractions
between 0 and 1. The first element gives the position of the list element at
the top of the window, relative to the TList as a whole (0.5 means it is
halfway through the TList, for example). The second element gives the
position of the list entry just after the last one in the window, relative to the
TList as a whole. These are the same values passed to scrollbars via the
—yscrollcommand option.

pathName yview index
Adjusts the view in the window so that the list entry given by index is
displayed at the top of the window.

pathName yview moveto fraction
Adjusts the view in the window so that the list entry given by
fraction appears at the top of the window. Fraction is a fraction between 0
and 1; 0 indicates the first entry in the TList, 0.33 indicates the entry
one-third the way through the TList, and so on.

pathName yview scroll number what
This command adjust the view in the window up or down according to
number and what. Number must be an integer. What must be either units or
pages. If what is units, the view adjusts up or down by number lines; if it is
pages then the view adjusts by number screenfuls. If number is negative then
earlier entries become visible; if it is positive then later entries become

BINDINGS
[1]

[2]

[3]

[4]

EXAMPLE

About this Manual

visible.

If the —selectmode is "browse", when the user drags the mouse pointer over the list
entries, the entry under the pointer will be highlighted and the

—browsecmd procedure will be called with one parameter, the index of the
highlighted entry. Only one entry can be highlighted at a time. The

—command procedure will be called when the user double—clicks on a list entry.

If the —selectmode is "single", the entries will only be highlighted by mouse
<ButtonRelease-1> events. When a new list entry is highlighted, the

—browsecmd procedure will be called with one parameter indicating the highlighted
list entry. The —command procedure will be called when the user double—clicks on a
list entry.

If the —selectmode is "multiple”, when the user drags the mouse pointer over the list
entries, all the entries under the pointer will be highlighted. However, only a
contiguous region of list entries can be selected. When the highlighted area is
changed, the —browsecmd procedure will be called with an undefined parameter. It
is the responsibility of the —browsecmd procedure to find out the exact highlighted
selection in the TList. The —command procedure will be called when the user
double—clicks on a list entry.

If the —selectmode is "extended", when the user drags the mouse pointer over the list
entries, all the entries under the pointer will be highlighted. The user can also make
disjointed selections using <Control-ButtonPress—1>. When the highlighted area is
changed, the —browsecmd procedure will be called with an undefined parameter. It

is the responsibility of the —browsecmd procedure to find out the exact highlighted
selection in the TList. The —command procedure will be called when the user
double—clicks on a list entry.

This example demonstrates how to use an TList to store a list of numbers:

set image [tix getimage folder]

set t [tixTList .t —orient vertical]

$t insert end -itemtype imagetext —-image $image —text one
$t insert end -itemtype imagetext —image $image —text two
$t insert end -itemtype imagetext —-image $image -text three
$t insert end -itemtype imagetext —-image $image -text four
$t insert end -itemtype imagetext —image $image -text five
$t insert end -itemtype imagetext —-image $image —text six

pack $t -

expand yes —fill both

KEYWORDS

tabular listboxwidget

Chapter 3: Mega Widgets

tixBalloon — Create and manipulate tixBalloon widgets

SYNOPSIS

tixBalloon pathName ?options?

SUPER-CLASS

The tixBalloon class is derived from the TixShell class and inherits all the commands,
options and subwidgets of its super—class.

STANDARD OPTIONS

The Balloon widget supports all the standard options of a frame widget. See the
options manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —initwait

Database Name: initWait

Database Class: InitWait
In milliseconds. Specifies how long the balloon should wait before popping up in a
widget.

Command-Line Name: —state

Database Name: state

Database Class: State
Specifies the which help message to display when the mouse pointer enters a widget
associated with this balloon. Valid options are both: display both the balloon
message and the status bar message, balloon: display only the balloon message,
status: display only the status bar message and none: display no messages.

Command-Line Name: —statusbar

Database Name: statusBar

Database Class: statusBar
Specifies the widget to use as the status bar of this balloon. This widget must have a
"—text" option. Usually a label widget is used.

SUBWIDGETS

Name: label
Class: Label

About this Manual

The label widget that shows the little arrow bitmap in the pop-up balloon window.

Name: message
Class: Label

The message widget that shows the descriptive message in the the pop—up balloon
window.

DESCRIPTION

The tixBalloon command creates a new window (given by the pathName argument) and
makes it into a Balloon widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the Balloon widget such as its
cursor and relief. The Balloon widget can be used to show popped-up messages that describe
the functions of the widgets in an application. A Balloon widget can be bound to a number of
widgets. When the user moves the cursor inside a widget to which a Balloon widget has been
bound, a small pop—up window with a descriptive message will be shown on the screen.

WIDGET COMMANDS

The tixBalloon command creates a new Tcl command whose name is the same as the path
name of the Balloon widget's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the Balloon widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for Balloon widgets:

pathName bind widget ?option value ... ?
Binds the Balloon widget to the widget. The messages to be shown can be passed as
extra arguments to this command in option value pairs. Possible options:
—balloonmsg specifies the string to show on the pop-up balloon window;
—statusmsg specifies the string to show on the status bar; -msg specifies a string to
show on both the balloon window and the stats bar window. When used together, the
—msg option has a lower precedence than the —balloonmsg and —statusmsg options.
The bind command can also be used to change the messages after the initial bindings

were set. Example:
button .b
set bal [tixBalloon .bal]

Add balloon binding
$bal bind .b -msg "This is a button”

#..

Change the balloon binding
$bal bind .b —msg "This is a useful button"

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixBalloon command.

pathName configure ?option? ?value option value ...?

About this Manual

Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified

with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixBalloon command.

pathName unbind widget
Cancels the Balloon widget's binding with widget.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of
the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

BINDINGS

After a widget has be bound to a Balloon widget, when the user moves the cursor into this
widget, the Balloon widget is activated: if the —balloonmsg option of this widget is set, the
balloon window pops up; if the —statusmsg option of this widget is set, the message will be
displayed in the status bar widget.

When the user moves the cursor out of the widget, the Balloon widget is de—activated: the
balloon window is withdrawn and the status—bar message removed.

KEYWORDS

Tix, context—sensitive hedalloon widget

tixButtonBox — Create and manipulate Tix ButtonBox
widgets

SYNOPSIS

tixButtonBox pathName ?options?

STANDARD OPTIONS

—anchor, anchor, Anchor

—background or —bg. background, Background
—borderWidth

About this Manual

—CUursor, cursor, Cursor
—relief, relief, Relief

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —orientation

Database Name: orientation

Database Class: Orientation
Static Option. Specifies the orientation of the button subwidgets. Only the values
"horizontal" and "vertical" are recognized.

Command-Line Name: —padx

Database Name: padx

Database Class: Pad
Specifies the harizontal padding between two neighboring button subwidgets in the
ButtonBox widget.

Command-Line Name: —pady

Database Name: pady

Database Class: Pad
Specifies the vertical padding between two neighboring button subwidgets in the
ButtonBox widget.

Command-Line Name: —state

Database Name: state

Database Class: State
Specifies the state of all the buttons inside the ButtonBox widget. Note: Setting this
option using the config widget command will enable or disable all the buttons
subwidgets. Original states of the individual buttons are not saved. Only the values
"normal" and "disabled" are recognized.

SUBWIDGETS

All the button subwidgets created as a result of the add command can be accessed by the
subwidget command. They are identified by the buttonName parameter to the
add command. Here is an example:

set bbox [tixButtonBox .bbox]

pack $bbox

$bbox add eat -—text Eat

$bbox add sleep —text Sleep

$bbox subwidget eat config —fg green
$bbox subwidget sleep config —fg red

DESCRIPTION

The tixButtonBox command creates a new window (given by the pathName argument) and
makes it into a ButtonBox widget. Additional options, described above, may be specified on
the command line or in the option database to configure aspects of the ButtonBox such as its
cursor and relief.

The ButtonBox widget can be used as a container widget to hold the ““action" buttons in a
dialog box.

About this Manual

WIDGET COMMAND

The tixButtonBox command creates a new Tcl command whose name is the same as the
path name of the ButtonBox's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the ButtonBox widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for ButtonBox widgets:

pathName add buttonName ?option value ...?
Add a new button subwidget with the name buttonName into the ButtonBox widget.
Additional configuration options can be given to configure the new button
subwidget.

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixButtonBox command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixButtonBox command.

pathName invoke buttonName
Invoke the button subwidget with the name buttonName.

pathName subwidget name ?args?
When no additional arguments are given, returns the pathname of the subwidget of

the specified name. When no additional arguments are given, the widget command
of the specified subwidget will be called with these parameters.

BINDINGS

TixButtonBox widgets have no default bindings. The button subwidgets retain their default
Tk bindings.

KEYWORDS

container widgetwidget

About this Manual

tixCheckList — Create and manipulate tixCheckList widgets

SYNOPSIS
tixCheckList pathName ?options?
SUPER-CLASS

The TixCheckList class is derived from the TixTree class and inherits all the commands,
options and subwidgets of its super—class.

STANDARD OPTIONS

TixCheckList supports all the standard options of a frame widget. See the options manual
entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —browsecmd

Database Name: browseCmd

Database Class: BrowseCmd
Specifies a command to call whenever the user browses on an entry (usually by
single—clicking on the entry). The command is called with one argument, the
pathname of the entry.

Command-Line Name: —command

Database Name: command

Database Class: Command
Specifies a command to call whenever the user activates an entry (usually by
double—clicking on the entry). The command is called with one argument, the
pathname of the entry.

Command-Line Name: —radio
Database Name: radio
Database Class: Radio

A Boolean value. If set to true, the user can select at most one item at a time; if set to
false, the user can select as many items as possible.

SUBWIDGETS

Name: hlist
Class: TixHList

The hierarchical listbox that displays the CheckList.

Name: hsb
Class: Scrollbar

The horizontal scrollbar subwidget.

About this Manual

Name: vsb
Class: Scrollbar

The vertical scrollbar subwidget.

DESCRIPTION

The tixCheckList command creates a new window (given by the pathName argument) and
makes it into a CheckList widget. Additional options, described above, may be specified on
the command line or in the option database to configure aspects of the CheckList widget such
as its cursor and relief.

The CheckList widget displays a list of items to be selected by the user. CheckList acts
similarly to the Tk checkbutton or radiobutton widgets, except it is capable of handling many
more items than checkbuttons or radiobuttons.

The items are contained in the hlist subwidget. Each item may be in one of the following
status: on (indicated by a check bitmap), off (indicated by a cross bitmap) default (indicated
by a gray box bitmap) or none, in which case the item will not be accompanied by a bitmap.
The items whose status is on, off or default are called the selectable items and can be
checked or crossed by the user. All selectable entries must be of the type imagetext.

The items whose status is none cannot be checked or crossed by the user; usually they are
included in the hlist subwidget only for explanation purposes or as separators.

Initially, all the items have a none status. To make an item selectable, you can call the
setstatus command to change its status (see below).

Notice that CheckList is a subclass of the TixTree widget and thus is is capable of displaying
a hierachy of selectable entries. When necessary, you can call the setmode method (see
TixTree) to define the hierachical structure of the selectable entries.

WIDGET COMMANDS

The tixCheckList command creates a new Tcl command whose name is the same as the path
name of the CheckList's window. This command may be used to invoke various operations

on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the CheckList widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for CheckList widgets:

pathName getselection ?status?
Returns a list of items whose status matches status. If status is not specified, the list
of items in the "on" status will be returned.

pathName getstatus entryPath
Returns the current status of entryPath.

pathName setstatus entryPath status

About this Manual

Sets the status of entryPath to be status. A bitmap will be displayed next to the entry
its status is on, off or default.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of
the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

EXAMPLE

This example creates several choices for the user to select.

set ¢ [tixCheckList .c]

$c subwidget hlist add choicel —itemtype imagetext —text Choicel
$c subwidget hlist add choice2 —itemtype imagetext —text Choice2
$c subwidget hlist add choice3 -itemtype imagetext —text Choice3
$c setstatus choicel on

$c setstatus choice?2 off

$c setstatus choice3 off

pack $c

BINDINGS

The basic mouse and keyboard bindings of the CheckList widget are the same as the bindings
of the TixTree widget. In addition, the status of the entries in the CheckList are toggled under
the following conditions:

[1]

When the user press the mouse button over an entry.

[2]

When the user press the <space> key over an entry.

[3]

When the user press the <Return> key over an entry.

KEYWORDS

hierarchical listboxtree widget

tixComboBox — Create and manipulate tixComboBox
widgets

About this Manual

SYNOPSIS

tixComboBox pathName ?options?

SUPER-CLASS

The TixComboBox class is derived from the TixLabelWidget class and inherits all the
commands, options and subwidgets of its super—class.

STANDARD OPTIONS

TixComboBox supports all the standard options of a frame widget. See the options(n)
manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —anchor

Database Name: anchor

Database Class: Anchor
Specifies how the string inside the entry subwidget should be aligned. Only the
values "w" or "e" are allowed. When set the "w", the entry is aligned to its beginning.
When set to "e", it is aligned to its end.

Command-Line Name: —arrowbitmap

Database Name: arrowBitmap

Database Class: ArrowBitmap
Specifies the bitmap to be used in the arrow button beside the entry widget. The
default is an downward arrow bitmap in the file $tix_library/bitmaps/cbxarrow

Command-Line Name: —browsecmd

Database Name: browseCmd

Database Class: BrowseCmd
Specifies the command to be called when the user browses through the listbox. This
command can be used to provide instant feedback when the user examines items in
the listbox before committing a choice.

Command-Line Name: —command

Database Name: command

Database Class: Command
Specifies the command to be called when the ComboBox is invoked or when the
—value of the ComboBox is changed.

Command-Line Name: —crossbhitmap

Database Name: crossBitmap

Database Class: CrossBitmap
Specifies the bitmap to be used in the "cross" button to the left of the entry widget.
The default is a bitmap in the file $tix_library/bitmaps/cross

Command-Line Name: —disablecallback
Database Name: disableCallback
Database Class: DisableCallback

About this Manual

A boolean value indicating whether callbacks should be disabled. When set to true,
the TCL command specified by the —command option is not executed when the
—value of the ComboBox. changes.

Command-Line Name: —disabledforeground
Database Name: disabledforeground
Database Class: DisabledForeground
Specifies the foreground color to be used when the ComboBox is disabled.

Command-Line Name: —dropdown

Database Name: dropdown

Database Class: Dropdown
A Boolean value specifying the style of the ComboBox. When set to "true”, the
listbox is only displayed temporarily when the arrow button is pressed. When set to
"false", the listbox is always displayed.

Command-Line Name: —editable

Database Name: editable

Database Class: Editable
Specifies whether the user is allowed to type into the entry subwidget of the
ComboBox.

Command-Line Name: —fancy

Database Name: fancy

Database Class: Fancy
A Boolean value specifying whether the cross and tick button subwidgets should be
shown.

Command-Line Name: —grab

Database Name: grab

Database Class: Grab
Specifies the pointer grabbing policy when the listbox is popped up. Only values
"global”, "local" or "none" are allowed. By default global grab is used. However,
when you are developing your application, you may want to use only local grabbing

so that in the event of errors, your X display won't be locked up.

Command-Line Name: —historylimit or —histlimit
Database Name: historyLimit
Database Class: HistoryLimit
Specifies how many previous user inputs can be stored in the history list.

Command-Line Name: —history

Database Name: history

Database Class: History
A Boolean value specifying whether previous user inputs should be stored in the
history list.

Command-Line Name: —label
Database Name: label
Database Class: Label
Specifies the string to display as the label of this ComboBox widget.

Command-Line Name: —labelside

About this Manual

Database Name: labelSide

Database Class: LabelSide
Specifies where the label should be displayed relative to the entry subwidget. Valid
options are: top, left, right, bottom, none or acrosstop.

Command-Line Name: -listcmd

Database Name: listCmd

Database Class: listCmd
Specifies a TCL command to be called every time when the listbox pops up. This
option allows you to fill up the listbox on—demand. This option is ignored when the
listbox is not in the dropdown style.

Command-Line Name: -listwidth

Database Name: listWidth

Database Class: listWidth
If set, this option controls the width of the listbox subwidget when it is popped up.
The option is ignored when the listbox is not in the dropdown style.

Command-Line Name: —prunehistory

Database Name: prunehistory

Database Class: PruneHistory
Specifies whether duplicated previous user inputs should be pruned from the the
history list. Only Boolean values are allowed.

Command-Line Name: —selection

Database Name: selection

Database Class: Selection
Contains the selection in the ComboBox (the string displayed in the entry
subwidget). Depending on the —selectmode, the selection of a ComboBox may be
different than its —value.

Command-Line Name: —selection

Database Name: selection

Database Class: Selection
This option stores the temporary selection. When the user types in a text string inside
the entry widget, that string is considered as a temporary input and is stored inside
the —selection option. The —value option is updated only when the user presses the
return key.

Command-Line Name: —selectmode

Database Name: selectMode

Database Class: SelectMode
Specifies the how the combobox responds to the mouse button events in the listbox
subwidget; can eithet be "browse" or "immediate". The default —selectmode is
"browse". See the BINDINGS section below.

Command-Line Name: —state

Database Name: state

Database Class: State
Specifies the whether the ComboBox is normal or disabled. Only the values
"normal" and "disabled" are recognized.

Command-Line Name: —tickbitmap

About this Manual

Database Name: tickBitmap

Database Class: tickBitmap
Specifies the bitmap to be used in the "tick" button to the left of the entry widget.
The default is a bitmap in the file $tix_library/bitmaps/tick

Command-Line Name: —-validatecmd

Database Name: validateCmd

Database Class: ValidateCmd
Specifies a TCL command to be called when the —value of the ComboBox is about
to change. This command is called with one parameter —— the new —value entered by
the user. This command is to validate this new value by returning a value it deems
valid.

Command-Line Name: —-value

Database Name: value

Database Class: Value
Specifies the string to be displayed in the entry subwidget of the ComboBox. When
gueried, the returned value is the last value selected by the user. When the
—value option is changed as a result of the config —value widget command, the TCL
command specified by the —command option is called.

Command-Line Name: —variable
Database Name: variable
Database Class: Variable
Specifies the global variable in which the value of the ComboBox should be stored.

The value of the ComboBox will be automatically updated when this variable is
changed.

SUBWIDGETS

Name: arrow
Class: Button

The down arrow button.

Name: cross
Class: Button

The cross button. Available only when —fancy is set.

Name: entry
Class: Entry

The entry that shows the value of this tixControl.

Name: label
Class: Label

The label subwidget.

Name: listbox
Class: Listbox

About this Manual

The listbox that holds all the list entries.

Name: slistbox
Class: TixScrolledListBox

The scrolled-listbox that provides the scrollbars.

Name: tick
Class: Button

The tick button. Available only when —fancy is set.

DESCRIPTION

The tixComboBox command creates a new window (given by the pathName argument) and
makes it into a tixComboBox widget. Additional options, described above, may be specified
on the command line or in the option database to configure aspects of the ComboBox such as
its cursor and relief. The Tix ComboBox widget is similar to the combo box control in MS
Windows. The user can select a choice by either typing in the entry subwdget or selecting
from the listbox subwidget.

WIDGET COMMANDS

The tixComboBox command creates a new Tcl command whose name is the same as the
path name of the ComboBox's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the ComboBox widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for ComboBox widgets:

pathName addhistory string
Add the string to the beinning of the listbox.

pathName appendhistory string
Append the string to the end of the listbox.

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixComboBox command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixComboBox command.

About this Manual

pathName flash index string

Flashes the ComboBox. flash is usually called by a —command procedure to
acknowledge to the user that he has selected a value for the ComboBox.

pathName insert index string

Insert the string into the listbox at the specified index. index must be a valid listbox
index.

pathName pick index

Set the (index)th item in the listbox to be the current value of the ComboBox. As a
result, the value of the ComboBox is changed and the TCL command sepcified by
the —command option will be called.

pathName subwidget name ?args?

BINDINGS

[1]

[2]

[3]

BUGS

When no options are given, returns the pathname of the subwidget of the specified
name. When options are given, the widget command of the specified subwidget will
be called with these options.

If the —selectmode is "immediate”, when the user enters a keystroke, clicks on an
item or drags the mouse pointer in the listbox, the —value of the ComboBox will be
immediately set to this item and the —command procedure will be called.

If the —selectmode is "browse", when the user enters a keystroke, clicks on an item
or drags the mouse pointer in the listbox, the —selection of the ComboBox will be
immediately set to the new content of the entry subwidget; also the

—browsecmd procedure will be called. The —value option will be changed only

when the user invokes the ComboBox (see [3] below). If the user presses the
<Escape> key at any time, any new —selection will be ignored and the text inside the
entry subwidget will be restored to the current —value of the ComboBox.

If the —dropdown option is true, the user can invoke the ComboBox by releasing the
left mouse button over the desired item in the listbox. If the —dropdown option is
false, the user can invoke the ComboBox by double—clicking over the desired item in
the listbox. In both cases, the user can also invoke the listbox by pressing the
<Return> or <Tab> key inside the entry subwidget, or switching the input focus to
another widget inside the same toplevel widget

Starting from Tix vetsion 4.0, the default —value of the ComboBox is the empty string. If
you want the ComboBox to show a string by default, you must configure its —value option
explicitly.

KEYWORDS

ComboBox listbox widget

About this Manual

tixControl — Create and manipulate tixControl widgets

SYNOPSIS

tixControl pathName ?options?

SUPER-CLASS

The TixControl class is derived from the TixLabelWidget class and inherits all the
commands, options and subwidgets of its super—class.

STANDARD OPTIONS

The Control widget supports all the standard options of a frame widget. See the
options manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —allowempty
Database Name: allowEmpty
Database Class: AllowEmpty
Specifies whether the Control widget should allow the empty string as a valid input.

Command-Line Name: —autorepeat

Database Name: autorepeat

Database Class: AutoRepeat
Specifies whether the Control widget should have autorepeat behavior. If set to be
"true", the value of the Control widget will be automatically incremented or
decremented when the user holds down the mouse button over the arrow buttons.
Only values "true" and "false" will be recognized.

Command-Line Name: —command

Database Name: command

Database Class: Command
Specifies the command to be called when the —value option of the Control widget is
changed. The command will be called with one arguments —— the new value of the
Control widget.

Command-Line Name: —decrcmd

Database Name: decrCmd

Database Class: DecrCmd
Specifies a TCL command to be called when the the user presses the down-arrow
button subwidget. This command is called with one parameter —— the current
—value of this Control widget. This command is to decrement this value by one step,
according to its own definition of "decrement”, and return the decremented value,

About this Manual

which will be stored in the —value of this Control widget.

Command-Line Name: —disablecallback

Database Name: disableCallback

Database Class: DisableCallback
A boolean value indicating whether callbacks should be disabled. When set to true,
the TCL command specified by the —command option is not executed when the
—value of the Control widget changes.

Command-Line Name: —disableforeground

Database Name: disableForeground

Database Class: DisableForeground
The foreground color to use for of the entry subwidget when the Control widget is
disabled.

Command-Line Name: —incrcmd

Database Name: incrCmd

Database Class: IncrCmd
Specifies a TCL command to be called when the the user presses the up—arrow
button subwidget. This command is called with one parameter —— the current
—value of this Control widget. This command is to increment this value by one step,
according to its own definition of "increment”, and return the incremented value,
which will be stored in the —value of this Control widget.

Command-Line Name: —initwait

Database Name: initwait

Database Class: Initwait
Specifies how long the Control widget should wait initially before it starts to
automatically increment or decrement its value in the autorepeat mode. In
milliseconds.

Command-Line Name: —integer
Database Name: integer
Database Class: Integer
A Boolean value specifying whether only integer numbers are accepted.

Command-Line Name: —label
Database Name: label
Database Class: Label
Specifies the string to display as the label of this Control widget.

Command-Line Name: —labelside

Database Name: labelSide

Database Class: LabelSide
Specifies where the label should be displayed relative to the entry subwidget. Valid
options are: top, left, right, bottom, none or acrosstop.

Command-Line Name: —max or —ulimit

Database Name: max

Database Class: Max
Specifies the upper limit of the value of the Control widget. When set to empty
string, the Control widget has no upper limit.

About this Manual

Command-Line Name: —min or —llimit

Database Name: min

Database Class: Min
Specifies the lower limit of the value of the Control widget.When set to empty string,
the Control widget has no lower limit.

Command-Line Name: —repeatrate

Database Name: repeatRate

Database Class: RepeatRate
Specifies how often the value of the Control widget should be incremented or
decremented when it is in the autorepeat mode. In milliseconds.

Command-Line Name: —selectmode

Database Name: selectMode

Database Class: SelectMode
Specifies how the Control widget should react to <KeyPress> events. When set to
"immediate”, any user keyboard inputs will immediately change the —value option.
When set to "normal”, the user keyboard inputs will be copied to the —value option
only if the <Return> key is pressed or the keyboard focus is changed. The use of
the immediate mode is discouraged. For effective use of the Control widget, one
should use the normal mode together with the update widget command (see below).

Command-Line Name: —state

Database Name: state

Database Class: State
Specifies the whether the Control widget is normal or disabled. Only the values
"normal" and "disabled" are recognized.

Command-Line Name: —step

Database Name: step

Database Class: Step
Specifies by how much the value of the Control widget should be incremented or
decrmented when the user press the arrow buttons.

Command-Line Name: —-validatecmd

Database Name: validateCmd

Database Class: ValidateCmd
Specifies a TCL command to be called when the —value of the Control widget is
about to change. This command is called with one parameter —— the new
—value entered by the user. This command is to validate this new value by returning
a value it deems valid.

Command-Line Name: —value
Database Name: value
Database Class: Value
Specifies the value of the Control widget.

Command-Line Name: —variable

Database Name: variable

Database Class: Variable
Specifies the global variable in which the value of the Control widget should be
stored. The value of the Control widget will be automatically updated when this
variable is changed.

About this Manual

SUBWIDGETS

Name: decr
Class: Button

The down arrow button.

Name: entry
Class: Entry

The entry that shows the value of this Control widget.

Name: incr
Class: Button

The up arrow button.

Name: label
Class: Label

The label subwidget.

DESCRIPTION

The tixControl command creates a new window (given by the pathName argument) and
makes it into a Control widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the Control widget such as its
cursor and relief.

The tixControl widget is sometimes referred to a "spinbox" widget. It is generally used to
control a value. The user can adjust the value by pressing the two arrow buttons or by
entering the value directly into the entry. The new value will be checked against the
user—defined upper and lower limits.

WIDGET COMMANDS

The tixControl command creates a new Tcl command whose nhame is the same as the path
name of the Control widget's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the Control widget's path name.
Option and the args determine the exact behavior of the command. The following commands
are possible for Control widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixControl command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see

About this Manual

Tk_Configurelnfo for information on the format of this list). If option is specified

with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixControl command.

pathName decr
Decrements the value of the Control widget by the step specified by the
—step option.

pathName incr
Increments the value of the Control widget by the step specified by the —step option.

pathName invoke
Causes the command specified by the —command option to be invoked.

pathName update
If the user has modified the entry using keyboard inputs, the update command will
update the —value of this Control widget. When the Control widget's
—selectmode option is set to "normal”, one should call the update command on this
widget before examining its —value option. This command has no effect in if the
—selectmode option is set to "immediate".

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of

the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

BINDINGS

When the user presses the up/down arrow buttons (or press the <Up> and <Down> arrow
keys on the keyboard), the value of the tixControl widget is adjusted according to the
-validatecmd, —incrcmd, —decrcmd, —step, —max and —min options.

KEYWORDS

spinbox widget

tixDirList — Create and manipulate tixDirList widgets

About this Manual

SYNOPSIS

tixDirList pathName ?options?

SUPER-CLASS

The TixDirList class is derived from the TixScrolledHList class and inherits all the
commands, options and subwidgets of its super—class.

STANDARD OPTIONS

TixDirList supports all the standard options of a frame widget. See the options manual entry
for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —browsecmd

Database Name: browseCmd

Database Class: BrowseCmd
Specifies a command to call whenever the user browses on a directory (usually by
single—clicking on the name of the directory). The command is called with one
argument, the complete pathname of the directory.

Command-Line Name: —command

Database Name: command

Database Class: Command
Specifies the command to be called when the user activates on a directory (usually
by double—clicking on the name of the directory). The command is called with one
argument, the complete pathname of the directory.

Command-Line Name: —dircmd

Database Name: dircmd

Database Class: DirCmd
Specifies the TCL command to be called when a directory listing is needed for a
particular directory. If this option is not specified, by default the DirList widget will
attempt to read the directory as a Unix directory. On special occasions, the
application programmer may want to supply a special method for reading directories:
for example, when he needs to list remote directories. In this case, the
—dircmd option can be used. The specified command accepts two arguments: the
first is the name of the directory to be listed; the second is a Boolean value indicating
whether hidden sub—directories should be listed. This command returns a list of
names of the sub—directories of this directory. For example:

proc read_dir {dir show_hidden} {
if {$dir == "C:\"}{
return {DOS NORTON WINDOWS}
}else {
return {}
}
}

Command-Line Name: —disablecallback
Database Name: disableCallback

About this Manual

Database Class: DisableCallback
A boolean value indicating whether callbacks should be disabled. When set to true,
the TCL command specified by the —command option is not executed when the
—value of the DirList widget changes.

Command-Line Name: —showhidden

Database Name: showHidden

Database Class: ShowHidden
Specifies whether hidden directories should be shown. By default, a directory name
starting with a period "." is considered as a hidden directory. This rule can be
overridden by supplying an alternative —dircmd option.

Command-Line Name: -root

Database Name: root

Database Class: Root
Specifies the name of the root directory. Usually this is "/" under Unix machines,
but can be changed to "C:\" in DOS environments.

Command-Line Name: —rootname

Database Name: rootName

Database Class: RootNAme
Specifies a text string to display at the root directory. If unspecified, the text string
will be the same as the string specified by -root.

Command-Line Name: —value or —directory
Database Name: value

Database Class: Value
Specifies the name of the current directory to be displayed in the DirList widget.

SUBWIDGETS

Name: hlist
Class: TixHList

The hierarchical listbox that displays the directory listing.

Name: hsb
Class: Scrollbar

The horizontal scrollbar subwidget.

Name: vsb
Class: Scrollbar

The vertical scrollbar subwidget.

DESCRIPTION

The tixDirList command creates a new window (given by the pathName argument) and
makes it into a DirList widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the DirList such as its cursor
and relief. The DirList widget displays a list view of a directory, its previous directories and

About this Manual

its sub—directories. The user can choose one of the directories displayed in the list or change
to another directory.

WIDGET COMMANDS

The tixDirList command creates a new Tcl command whose name is the same as the path
name of the DirList's window. This command may be used to invoke various operations on

the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the DirList widget's path name.
Option and the args determine the exact behavior of the command. The following commands
are possible for DirList widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixDirList command.

pathName chdir dir
Change the current directory to dir.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixDirList command.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of

the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

BINDINGS

The mouse and keyboard bindings of the DirList widget are the same as the bindings of the
HList widget.

KEYWORDS

directory list widget

About this Manual

tixDirSelectDialog — Create and manipulate directory
selection dialogs.

SYNOPSIS

tixDirSelectDialog pathName ?options?

STANDARD OPTIONS

TixDirSelectDialog supports all the standard options of a toplevel widget. See the
options manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —command

Database Name: command

Database Class: Command
Specifies the command to be called when the user selects a directory in the dialog
box. The command is called with one extra argument, the complete pathname of the
directory. If the user cancels the selection, this command is not called.

SUBWIDGETS

Name: dirbox
Class: TixDirSelectBox

The DirSelectBox widget that consists of the main part of the dialog.

Name: cancel
Class: Button

The "Cancel" button.

Name: ok
Class: Buton

The "OK" button.

DESCRIPTION

The tixDirSelectDialog command creates a new window (given by the pathName argument)
and makes it into a DirSelectDialog widget. Additional options, described above, may be
specified on the command line or in the option database to configure aspects of the
DirSelectDialog such as its cursor and relief. The DirSelectDialog widget presents the
directories in the file system in a dialog window. The user can use this dialog window to
navigate through the file system to select the desired directory.

About this Manual

WIDGET COMMANDS

The tixDirSelectDialog command creates a new Tcl command whose name is the same as
the path name of the DirSelectDialog's window. This command may be used to invoke

various operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the DirSelectDialog widget's
path name. Option and the args determine the exact behavior of the command. The following
commands are possible for DirSelectDialog widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixDirSelectDialog command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixDirSelectDialog command.

pathName popup
Pops up the DirSelectDialog widget on the screen.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of
the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

EXAMPLE

set dig [tixDirSelectDialog .dlg —-command SelectDir]
$dlg popup

proc SelectDir {dir} {
puts "You have selected \"$dir\""

}

KEYWORDS

directory selectqrwidget dialog

About this Manual

tixDirTree — Create and manipulate tixDirTree widgets

SYNOPSIS

tixDirTree pathName ?options?

SUPER-CLASS

The TixDirTree class is derived from the TixScrolledHList class and inherits all the
commands, options and subwidgets of its super—class.

STANDARD OPTIONS

TixDirTree supports all the standard options of a frame widget. See the options manual
entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —browsecmd

Database Name: browseCmd

Database Class: BrowseCmd
Specifies a command to call whenever the user browses on a directory (usually by
single—clicking on the name of the directory). The command is called with one
argument, the complete pathname of the directory.

Command-Line Name: —command

Database Name: command

Database Class: Command
Specifies the command to be called when the user activates on a directory (usually
by double-clicking on the name of the directory). The command is called with one
argument, the complete pathname of the directory.

Command-Line Name: —dircmd

Database Name: dircmd

Database Class: DirCmd
Specifies the TCL command to be called when a directory listing is needed for a
particular directory. If this option is not specified, by default the DirTree widget will
attempt to read the directory as a Unix directory. On special occasions, the
application programmer may want to supply a special method for reading directories:
for example, when he needs to list remote directories. In this case, the
—dircmd option can be used. The specified command accepts two arguments: the
first is the name of the directory to be listed; the second is a Boolean value indicating
whether hidden sub—directories should be listed. This command returns a list of

names of the sub-directories of this directory. For example:
proc read_dir {dir show_hidden} {

if {$dir =="C:\"}{
return {DOS NORTON WINDOWS}
}else {

return {}
}
}

About this Manual

Command-Line Name: —disablecallback

Database Name: disableCallback

Database Class: DisableCallback
A boolean value indicating whether callbacks should be disabled. When set to true,
the TCL command specified by the —command option is not executed when the
—value of the DirTree widget changes.

Command-Line Name: —showhidden
Database Name: showHidden
Database Class: ShowHidden
Specifies whether hidden directories should be shown. By default, a directory name

starting with a period "." is considered as a hidden directory. This rule can be
overridden by supplying an alternative —dircmd option.

Command-Line Name: —value or —directory
Database Name: value
Database Class: Value
Specifies the name of the current directory to be displayed in the DirTree widget.

SUBWIDGETS

Name: hlist
Class: TixHList

The hierarchical listbox that displays the directory listing.

Name: hsb
Class: Scrollbar

The horizontal scrollbar subwidget.

Name: vsb
Class: Scrollbar

The vertical scrollbar subwidget.

DESCRIPTION

The tixDirTree command creates a new window (given by the pathName argument) and
makes it into a DirTree widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the DirTree such as its cursor
and relief. The DirTree widget displays a list view of a directory, its previous directories and
its sub—directories. The user can choose one of the directories displayed in the list or change
to another directory.

WIDGET COMMANDS

The tixDirTree command creates a new Tcl command whose name is the same as the path
name of the DirTree's window. This command may be used to invoke various operations on

the widget. It has the following general form:
pathName option ?arg arg ...?

About this Manual

PathName is the name of the command, which is the same as the DirTree widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for DirTree widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixDirTree command.

pathName chdir dir
Change the current directory to dir.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixDirTree command.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of

the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

BINDINGS

The mouse and keyboard bindings of the DirTree widget are the same as the bindings of the
HList widget.

KEYWORDS

directory treewidget

tixExFileSelectBox — Create and manipulate
tixExFileSelectBox widgets

SYNOPSIS

tixExFileSelectBox pathName ?options?

About this Manual

SUPER-CLASS

The TixExFileSelectBox class does not have a super—class.

STANDARD OPTIONS

TixExFileSelectBox supports all the standard options of a frame widget. See the
options manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —browsecmd

Database Name: browseCmd

Database Class: BrowseCmd
Specifies a command to call whenever the user browses on a filename in the file
listbox (usually by single—clicking on the filename). The command is called with one
argument, the complete pathname of the file.

Command-Line Name: —command

Database Name: command

Database Class: Command
Specifies the command to be called when the user chooses on a filename the file
listbox (usually by double—clicking on the filename). The command is called with
one argument, the complete pathname of the file.

Command-Line Name: —dialog

Database Name: dialog

Database Class: Dialog
Specifies a dialog box which contains this ExFileSelectBox widget. The dialog box
must be a widget of the class TixShell or its descendant classes. This is an internal
option and should not be used by application programmers.

Command-Line Name: —dircmd

Database Name: dircmd

Database Class: DirCmd
Specifies the TCL command to be called when a file listing is heeded for a particular
directory. If this option is not specified, by default the ExFileSelectBox widget will
attempt to read the directory as a Unix directory. On special occasions, the
application programmer may want to supply a special method for reading directories:
for example, when he needs to list remote files. In this case, the —dircmd option can
be used. The specified command accepts three arguments: the first is the name of the
directory to be listed; the second is a list of file patterns, the third is a Boolean value
indicating whether hidden files should be listed. This command returns a list of
names of the files of this directory which match with the file patterns.

Command-Line Name: —directory or —dir

Database Name: directory

Database Class: Directory
Specifies the current directory whose files and sub—directories are displayed in the
ExFileSelectBox.

Command-Line Name: —disablecallback

About this Manual

Database Name: disableCallback

Database Class: DisableCallback
A boolean value indicating whether callbacks should be disabled. When set to true,
the TCL command specified by the —command option is not executed when the
—value of the ExFileSelectBox widget changes.

Command-Line Name: —filetypes

Database Name: fileTypes

Database Class: FileTypes
Specifies the file types that can be selected from the "List Files of Type:" ComboBox
subwidget. The value of this option must be a TCL list; each item of this list must in
turn be a list of two elements. The first element is a list of file patterns. The second
element is a string that describe these file patterns. For example:

tixExFileSelectBox .box —filetypes {

{{*} {All files}}

{{*.txt} {Text files}}

{{*.c *.n} {C source files}}

}

Command-Line Name: —showhidden

Database Name: showHidden

Database Class: ShowHidden
Specifies whether hidden directories should be shown. By default, a directory name
starting with a period "." is considered as a hidden directory.

Command-Line Name: —pattern

Database Name: pattern

Database Class: Pattern
Specifies whether the file pattern(s) to match with the files in the current directory.
One or more file patterns can be given at the same time. For example, {*.c *.h} will
match all files that have either the ".h" or ".c" extensions.

Command-Line Name: —value or —selection
Database Name: value

Database Class: Value
Specifies the name of the filename currently selected by the user.

SUBWIDGETS

Name: cancel
Class: Button

The button widget with the "Cancel" label.

Name: dir
Class: TixComboBox

The ComboBox subwidget under the "Directories" heading.

Name: dirlist
Class: TixDirList

The DirList subwidget that shows the hierarchical list of directories.

About this Manual

Name: file
Class: TixComboBox

The ComboBox subwidget under the "Files" heading.

Name: filelist
Class: TixScrolledListBox

The ScrolledListBox subwidget that shows the list of filenames.

Name: hidden
Class: Checkbutton

The checkbutton widget with the "Show Hidden Files" label.

Name: ok
Class: Button

The button widget with the "OK" label.

Name: types
Class: TixComboBox

The ComboBox subwidget under the "List Files of Type" heading.

DESCRIPTION

The tixExFileSelectBox command creates a new window (given by the pathName argument)
and makes it into a ExFileSelectBox widget. Additional options, described above, may be
specified on the command line or in the option database to configure aspects of the
ExFileSelectBox such as its cursor and relief. The ExFileSelectBox widget is usually
embedded in a tixExFileSelectDialog widget. It provides an convenient method for the user
to select files. The style of the ExFileSelectBox widget is very similar to the standard file
dialog in MS Windows 3.1.

WIDGET COMMANDS

The tixExFileSelectBox command creates a new Tcl command whose name is the same as
the path name of the ExFileSelectBox's window. This command may be used to invoke

various operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the ExFileSelectBox widget's
path name. Option and the args determine the exact behavior of the command. The following
commands are possible for ExFileSelectBox widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixExFileSelectBox command.

pathName configure ?option? ?value option value ...?

About this Manual

Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified

with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixExFileSelectBox command.

pathName filter
Forces the ExFileSelectBox widget to re—filter all the filenames according to the
—pattern option.

pathName invoke
Forces the ExFileSelectBox widget to perform actions as if the user has pressed the
"OK" button.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of

the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

KEYWORDS

file selector widget

tixExFileSelectDialog — Create and manipulate
tixExFileSelectDialog widgets

SYNOPSIS

tixExFileSelectDialog pathName ?options?
SUPER-CLASS
The TixExFileSelectDialog class does not have a super—class.

STANDARD OPTIONS

TixExFileSelectDialog supports all the standard options of a frame widget. See the
options manual entry for details on the standard options.

About this Manual

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —command

Database Name: command

Database Class: Command
Specifies the command to be called when the user chooses on a filename (usually by
selecting the filename and clicking on the "OK" button"). The command is called
with one argument, the complete pathname of the file.

SUBWIDGETS

Name: fsbox
Class: TixExFileSelectBox

The ExFileSelectBox subwidget embedded inside the ExFileSelectDialog.

DESCRIPTION

The tixExFileSelectDialog command creates a new window (given by the

pathName argument) and makes it into a ExFileSelectDialog widget. Additional options,
described above, may be specified on the command line or in the option database to
configure aspects of the ExFileSelectDialog such as its cursor and relief. The
ExFileSelectDialog widget provides an convenient method for the user to select files. The
style of the ExFileSelectDialog widget is very similar to the standard file dialog in MS
Windows 3.1.

WIDGET COMMANDS

The tixExFileSelectDialog command creates a new Tcl command whose hame is the same
as the path name of the ExFileSelectDialog's window. This command may be used to invoke

various operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the ExFileSelectDialog
widget's path name. Option and the args determine the exact behavior of the command. The
following commands are possible for ExFileSelectDialog widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixExFileSelectDialog command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixExFileSelectDialog command.

About this Manual

pathName popdown
Withdraws the ExFileSelectDialog from the screen.

pathName popup
Pops up the ExFileSelectDialog on the screen.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of

the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

KEYWORDS

file selector widget dialog

tixFileEntry — Create and manipulate tixFileEntry widgets

SYNOPSIS

tixFileEntry pathName ?options?

SUPER-CLASS

The TixFileEntry class is derived from the TixLabelWidget class and inherits all the
commands, options and subwidgets of its super—class.

STANDARD OPTIONS

The FileEntry widget supports all the standard options of a frame widget. See the
options manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —activatecmd

Database Name: activateCmd

Database Class: ActivateCmd
Specifies the command to be called when the user activates the button subwidget.
This command is called before the file dialog is popped up and can be used to
customize the file dialog (which may be shared by several FileEnt widget).

Command-Line Name: —command
Database Name: command
Database Class: Command
Specifies the command to be called when the —value option of the FileEntry is

About this Manual

changed. This usually happens when the user inputs a filename into the entry
subwidget and hits the <Return> key. The command will be called with one
arguments —— the new value of the FileEntry widget.

Command-Line Name: —dialogtype

Database Name: dialogType

Database Class: DialogType
Specifies which type of file selection dialog should be popped up when the user
invokes the button subwidget. Current only two values are valid:

tixFileSelectDialogor tixExFileSelectDialog.

Command-Line Name: —disablecallback

Database Name: disableCallback

Database Class: DisableCallback
A boolean value indicating whether callbacks should be disabled. When set to true,
the TCL command specified by the —command option is not executed when the
—value of the FileEntry widget changes.

Command-Line Name: —disableforeground

Database Name: disableForeground

Database Class: DisableForeground
The foreground color to use for of the entry subwidget when the FileEntry widget is
disabled.

Command-Line Name: —filebitmap
Database Name: fileBitmap
Database Class: FileBitmap
Specifies the bitmap to display in side the button subwidget.

Command-Line Name: —label
Database Name: label
Database Class: Label
Specifies the string to display as the label of this FileEntry widget.

Command-Line Name: —labelside

Database Name: labelSide

Database Class: LabelSide
Specifies where the label should be displayed relative to the entry subwidget. Valid
options are: top, left, right, bottom, none or acrosstop.

Command-Line Name: —selectmode

Database Name: selectMode

Database Class: SelectMode
Specifies how the FileEntry widget should react to <KeyPress> events. When set
to "immediate", any user keyboard inputs will immediately change the
—value option. When set to "normal”, the user keyboard inputs will be copied to the
—value option only if the <Return> key is pressed or the keyboard focus is
changed. The use of the immediate mode is discouraged. For effective use of the
FileEntry widget, one should use the normal mode together with the update widget
command (see below).

Command-Line Name: —state
Database Name: state

About this Manual

Database Class: State
Specifies the whether the FileEntry widget is hormal or disabled. Only the values
"normal" and "disabled" are recognized.

Command-Line Name: —-validatecmd

Database Name: validateCmd

Database Class: ValidateCmd
Specifies a TCL command to be called when the —value of the FileEntry widget is
about to change. This command is called with one parameter —— the new
—value entered by the user. This command is to validate this new value by returning
a value it deems valid.

Command-Line Name: —value
Database Name: value
Database Class: Value
Specifies the value of the FileEntry.

Command-Line Name: —variable

Database Name: variable

Database Class: Variable
Specifies the global variable in which the value of the FileEntry should be stored.
The value of the FileEntry will be automatically updated when this variable is
changed.

SUBWIDGETS

Name: button
Class: Button

The button subwidget next to the entry subwidget.

Name: entry
Class: Entry

The entry subwidget in which the user can type in a filename.

DESCRIPTION

The tixFileEntry command creates a new window (given by the pathName argument) and
makes it into a FileEntry widget. Additional options, described above, may be specified on
the command line or in the option database to configure aspects of the FileEntry such as its
cursor and relief.

The FileEntry widget can be used to input a filename. The user can type in the filename
manually. Alternatively, the user can press the button widget that sits next to the entry, which
will bring up a file selection dialog of the type specified by the —dialogtype option.

WIDGET COMMANDS

The tixFileEntry command creates a new Tcl command whose name is the same as the path
name of the FileEntry's window. This command may be used to invoke various operations on
the widget. It has the following general form:

About this Manual

pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the FileEntry widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for FileEntry widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixFileEntry command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixFileEntry command.

pathName invoke
Forces the FileEntry widget to act as if the user has pressed the <return> key inside
the entry subwidget.

pathName filedialog ?args?
When no additional arguments are given, this command returns the pathname of the
file dialog box associated with this FileEnt widget. When additional arguments are
given, the widget command of the file dialog will be called with these arguments.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of
the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

pathName update
If the user has modified the entry using keyboard inputs, the update command will
update the —value of this FileEntry widget. When the FileEntry widget's
—selectmode option is set to "normal”, one should call the update command on this
widget before examining its —value option. This command has no effect in if the
—selectmode option is set to "immediate"”.

KEYWORDS

file entry, widget

About this Manual

tixFileSelectBox — Create and manipulate Tix FileSelectBox
widgets

SYNOPSIS

tixFileSelectBox pathName ?options?

STANDARD OPTIONS

The FileSelectBox widget supports all the standard options of a frame widget. See the
options manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —browsecmd

Database Name: browsecmd

Database Class: browseCmd
Specifies the command to execute when the user browses through the files. By
default, if the —browsecmd is specified, the browse command will be executed when
the user clicks on a filename in the Files listbox.

Command-Line Name: —command

Database Name: command

Database Class: Command
Specifies the command to execute when the FileSelectBox is invoked. This
command is executed with one parameter : the filename selected by the user.

Command-Line Name: —directory or —dir

Database Name: directory

Database Class: Directory
Specifies the directory to look for files. By default this will be the current working
directory of the program and will be changed as the user browses through the
directories.

Command-Line Name: —disablecallback

Database Name: disableCallback

Database Class: DisableCallback
A boolean value indicating whether callbacks should be disabled. When set to true,
the TCL command specified by the —command option is not executed when the
—-value of the ExFileSelectBox widget changes.

Command-Line Name: —pattern

Database Name: pattern

Database Class: Pattern
Specifies the matching pattern of the file names that should be listed in the
Files listbox. For example "*.c" matches all the filenames that end with ".c". If this
option is set to the empty string, the default pattern ™" will be used.

Command-Line Name: —value or —selection

About this Manual

Database Name: value
Database Class: Value
Specifies the name of the filename currently selected by the user.

SUBWIDGETS

Name: dirlist
Class: TixScrolledListBox

The scrolled listbox that shows the directories.

Name: filelist
Class: TixScrolledListBox

The scrolled listbox that shows the files.

Name: filter
Class: TixComboBox

The ComboBox listbox that shows the filter string.

Name: selection
Class: TixComboBox

The ComboBox listbox that shows the file selection.

DESCRIPTION

The tixFileSelectBox command creates a new window (given by the pathName argument)
and makes it into a FileSelectBox widget. Additional options, described above, may be
specified on the command line or in the option database to configure aspects of the
FileSelectBox such as its cursor and relief.

The FileSelectBox is similar to the standard Motif(TM) file—selection box. It is generally

used for the user to choose a file. FileSelectBox stores the files mostly recently selected into
a ComboBox widget so that they can be quickly selected again. The

tixFileSelectDialog widget is a combination of the FileSelectBox widget and a dialog

widget.

WIDGET COMMAND

The tixFileSelectBox command creates a new Tcl command whose name is the same as the
path name of the FileSelectBox's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the FileSelectBox widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for FileSelectBox widgets:

pathName cget option

About this Manual

Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixFileSelectBox command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixFileSelectBox command.

pathName filter
Updates the files listed in the FileSelectBox according to the filtering pattern
sepcified in the filter subwidget.

pathName invoke
Execute the command specified by the —command option with the filename stored
in the selection subwidget.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of
the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

DEFAULT BINDINGS

TIX automatically creates class bindings for FileSelectBoxes that give them the following
default behavior:

[1]
Mouse button 1 in the Directory listbox will change the filter string to the selected
directory.

[2]
Mouse button 1 in the Files listbox will change the filename that appears in the
Selection entry. It will also trigger the —browsecmd if the option has been specified.

[3]
The current directory will be changed by (1) double clicking the Directory listbox or
(2) invoking the Filter ComboBox. Please refer to the man page of
tixComboBox for the default bindings of the ComboBoxes and how they can be
invoked.

[4]
The command specified by the option —command will be invoked by (1) double
clicking the Files listbox or (2) invoking Selection ComboBox.

About this Manual

KEYWORDS

file selector widget

tixFileSelectDialog — Create and manipulate
tixFileSelectDialog widgets

SYNOPSIS

tixFileSelectDialog pathName ?options?

SUPER-CLASS

The TixFileSelectDialog class does not have a super—class.

STANDARD OPTIONS

TixFileSelectDialog supports all the standard options of a frame widget. See the
options manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —command

Database Name: command

Database Class: Command
Specifies the command to be called when the user chooses on a filename (usually by
selecting the filename and clicking on the "OK" button"). The command is called
with one argument, the complete pathname of the file.

SUBWIDGETS

Name: btns
Class: TixStdButtonBox

The StdButtonBox subwidget at the bottom of FileSelectDialog. It contains the
"OK", "Filter, "Cancel" and "Help" buttons.

Name: fsbox
Class: TixFileSelectBox

The FileSelectBox subwidget at the top of the FileSelectDialog.

About this Manual

DESCRIPTION

The tixFileSelectDialog command creates a new window (given by the pathName argument)
and makes it into a FileSelectDialog widget. Additional options, described above, may be
specified on the command line or in the option database to configure aspects of the
FileSelectDialog such as its cursor and relief.

The FileSelectDialog widget provides an convenient method for the user to select files. The
FileSelectBox is similar to the standard Motif(TM) file—selection box.

WIDGET COMMANDS

The tixFileSelectDialog command creates a new Tcl command whose name is the same as
the path name of the FileSelectDialog's window. This command may be used to invoke

various operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the FileSelectDialog widget's
path name. Option and the args determine the exact behavior of the command. The following
commands are possible for FileSelectDialog widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixFileSelectDialog command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixFileSelectDialog command.

pathName popdown
Withdraws the FileSelectDialog from the screen.

pathName popup
Pops up the FileSelectDialog on the screen.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of

the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

KEYWORDS

file selector widget dialog

About this Manual

tixLabelEntry — Create and manipulate tixLabelEntry
widgets

SYNOPSIS

tixLabelEntry pathName ?options?

SUPER-CLASS

The TixLabelEntry class is derived from the TixLabelWidget class and inherits all the
commands, options and subwidgets of its super—class.

STANDARD OPTIONS

The LabelEntry widget supports all the standard options of a frame widget. See the
options manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —disableforeground

Database Name: disableForeground

Database Class: DisableForeground
The foreground color to use for of the entry subwidget when the LabelEntry widget
is disabled.

Command-Line Name: —label
Database Name: label
Database Class: Label
Specifies the string to display as the label of this LabelEntry widget.

Command-Line Name: —labelside

Database Name: labelSide

Database Class: LabelSide
Specifies where the label should be displayed relative to the entry subwidget. Valid
options are: top, left, right, bottom, none or acrosstop.

Command-Line Name: —state

Database Name: state

Database Class: State
Specifies the whether the LabelEntry widget is normal or disabled. Only the values
"normal” and "disabled" are recognized.

About this Manual

SUBWIDGETS

Name: label
Class: Label

The label subwidget.

Name: entry
Class: Entry

The entry subwidget.

DESCRIPTION

The tixLabelEntry command creates a new window (given by the pathName argument) and
makes it into a LabelEntry widget. Additional options, described above, may be specified on
the command line or in the option database to configure aspects of the LabelEntry such as its
cursor and relief.

The LabelEntry widget packages an entry widget and a label into one mega widget. It can be
used be used to simplify the creation of "entry—form" type of interface. In this kind of
interface, one must create many entry widgets with label widgets next to them and describe
the use of each of the entry widgets.

WIDGET COMMANDS

The tixLabelEntry command creates a new Tcl command whose hame is the same as the
path name of the LabelEntry's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the LabelEntry widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for LabelEntry widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixLabelEntry command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixLabelEntry command.

pathName subwidget name ?args?

About this Manual

When no options are given, this command returns the pathname of the subwidget of
the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

KEYWORDS

label entry widget

tixLabelFrame — Create and manipulate tixLabelFrame
widgets

SYNOPSIS

tixLabelFrame pathName ?options?

SUPER-CLASS

The TixLabelFrame class is derived from the TixLabelWidget class and inherits all the
commands, options and subwidgets of its super—class.

STANDARD OPTIONS

The LabelFrame widget supports all the standard options of a frame widget. See the
options manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —label
Database Name: label
Database Class: Label
Specifies the string to display as the label of this LabelFrame widget.

Command-Line Name: —labelside

Database Name: labelSide

Database Class: LabelSide
Specifies where the label should be displayed relative to the entry subwidget. Valid
options are: top, left, right, bottom, none or acrosstop.

Command-Line Name: —padx

Database Name: padX

Database Class: Pad
Specifies the amount of the horizontal padding around the frame subwidget. Must be
a valid non—negative integer number.

About this Manual

Command-Line Name: —pady
Database Name: padY
Database Class: Pad
Specifies the amount of the vertical padding around the frame subwidget.

SUBWIDGETS

Name:_frame
Class;_Frame

The frame subwidget.

Name: label
Class: Label

The label subwidget.

DESCRIPTION

The tixLabelFrame command creates a new window (given by the pathName argument) and
makes it into a LabelFrame widget. Additional options, described above, may be specified on
the command line or in the option database to configure aspects of the LabelFrame such as

its cursor and relief.

CREATING WIDGETS INSIDE A LABELFRAME

The LabelFrame widget packages a frame widget and a label into one mega widget. To
create widgets inside a LabelFrame widget, one must create the new widgets relative to the
frame subwidget and manage them inside_the frame subwidget. An error will be generated if
one tries to create widgets as immediate children of the LabelFrame. For example: the
following is correct code, which creates new widgets inside the frame subwidget:

tixLabelFrame .f

set f [.f subwidget frame]
button $f.b —text hi

pack $f.b

The following example code is incorrect because it tries to create immediate children of the
LabelFrame .f:

tixLabelFrame .f
wrong!

button .f.b —text hi
pack .f.b

WIDGET COMMANDS

The tixLabelFrame command creates a new Tcl command whose name is the same as the
path name of the LabelFrame's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the LabelFrame widget's path

About this Manual

name. Option and the args determine the exact behavior of the command. The following
commands are possible for LabelFrame widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixLabelFrame command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixLabelFrame command.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of
the specified name.

When options are given, the widget command of the specified subwidget will be called with
these options.

KEYWORDS

label frame widget

tixListNoteBook — Create and manipulate tixListNoteBook
widgets

SYNOPSIS
tixListNoteBook pathName ?options?

STANDARD OPTIONS

The ListNoteBook widget supports all the standard options of a frame widget. See the
options(n) manual entry for details on the standard options.

About this Manual

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —dynamicgeometry

Database Name: dynamicGeometry

Database Class: DynamicGeometry
If set to false, the size of the ListNotebook will match the size of the largest page. If
set to true, the size of the ListNotebook will match the size of the current page
(therefore, the size may change when the user selects different pages). The default
value is false. A setting of true is discouraged.

Command-Line Name: —ipadx
Database Name: ipadX
Database Class: Pad
The amount of internal horizontal paddings around the sides of the page subwidgets.

Command-Line Name: —ipady
Database Name: ipadY
Database Class: Pad
The amount of internal vertical paddings around the sides of the page subwidgets.

SUBWIDGETS

Name: hlist
Class: TixHList

The HList widget that displays the hames of the pages.

In addition, all the page subwidgets created as a result of the add command can be accessed
by the subwidget command. They are identified by the pageName parameter to the
add command.

DESCRIPTION

The tixListNoteBook command creates a hew window (given by the pathName argument)
and makes it into a ListNoteBook widget. Additional options, described above, may be
specified on the command line or in the option database to configure aspects of the
ListNoteBook widget such as its cursor and relief. The ListNoteBook widget is very similar
to the TixNoteBook widget: it can be used to display many windows in a limited space using
a "notebook" metaphore. The notebook is divided into a stack of pages (windows). At one
time only one of these pages can be shown. The user can navigate through these pages by
choosing the name of the desired page in the hlist subwidget.

WIDGET COMMANDS

The tixListNoteBook command creates a new Tcl command whose name is the same as the
path name of the ListNoteBook widget's window. This command may be used to invoke

various operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the ListNoteBook widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for ListNoteBook widgets:

About this Manual

pathName add pageName ?option value ...?
Adds a new ListNotebook page subwidget into the ListNoteBook widget.
pageName must be the name of an existing entry of the hlist subwidget. You must
create the entry before calling the aclsmmand. Please refer to the tixHList manual
entry for adding entries in an HList widget. Additional parameters may be supplied
to configure this page subwidget. Possible options are:

—createcmd
Specifies a TCL command to be called the first time a page is shown on the
screen. This option can be used to delay the creation of the contents of a
page until necessary. Therefore, it can be used to speed up interface creation
process especially when there are a large number of pages in a ListNoteBook
widget.

—-raisecmd
Specifies a TCL command to be called whenever this page is raised by the
user.

When successful, this command returns the pathname of the newly created page.

pathName cget option
Returns the current value of the configuration option given by option.Option may
have any of the values accepted by the tixListNoteBook command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixListNoteBook command.

pathName delete pageName?
Deletes the page identified by pageName.

pathName pagecget pageName option
Returns the current value of the configuration option given by option in the page
given by pageName. Option may have any of the values accepted by the add widget
command.

pathName pageconfigure pageName ?option? ?value ...?
When no option is given, prints out the values of all options of this page. If option is
specified with no value, then the command returns the current value of that option. If
one or more option—value pairs are specified, then the command modifies the given
page's option(s) to have the given value(s); in this case the command returns an
empty string. Option may be any of options accepted by the add widget command.

pathName pages
Returns a list of the names of all the pages.

About this Manual

pathName raise pageName
Raise the page identified by pageName.

pathName raised
Returns the name of the currently raised page.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of
the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

EXAMPLE

set n [tixListNoteBook .n]; pack $n
$n subwidget hlist add pagel —text "Page 1"
$n subwidget hlist add page2 —text "Page 2"

set pagel [$n add pagel]
set page2 [$n add page?2]

button $pagel.b —text "On pagel”
button $page2.b —text "On page2"

pack $pagel.b
pack $page2.b

$n raise page?2
BINDINGS

When the user activates an entry in the hlist subwidget, the page associated with that entry
will be raised to the front. This can be done by using the mouse or keyboard. The

hlist subwidget operates with its —selectmode option set to single. See the event bindings of
the HList widget for more details.

KEYWORDS

notebook widget

tixMeter — Create and manipulate Tix Meter widgets

SYNOPSIS

tixMeter pathName ?options?

About this Manual

SUPER-CLASS

None.

STANDARD OPTIONS

The Meter widget supports all the standard options of a frame widget. See the
options manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: fillcolor
Database Name: fillColor
Database Class: FillColor

The color of the progress bar.

Command-Line Name: —text

Database Name: text

Database Class: Text
The text string to place inside the progress bar. If not specified, then the text string
will be the percentage value specified by the —value option.

Command-Line Name: —value
Database Name: value
Database Class: Value
A real value that specifies the progress. Must be between 0.0 to 1.0.

DESCRIPTION

The tixMeter command creates a new window (given by the pathName argument) and
makes it into a Meter widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the Meter widget such as its
cursor and relief. The Meter widget can be used to show the pregress of a background job
which may take a long time to execute.

WIDGET COMMANDS

The tixMeter command creates a new Tcl command whose name is the same as the path
name of the Meter widget's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the Meter widget's path name.
Option and the args determine the exact behavior of the command. The following commands
are possible for Meter widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixMeter command.

pathName configure ?option? ?value option value ...?

About this Manual

Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified

with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixMeter command.

BINDINGS

There is no bindings for the Meter widget.

KEYWORDS
meter progresswidget

tixNoteBook — Create and manipulate tixNoteBook widgets

SYNOPSIS

tixNoteBook pathName ?options?

STANDARD OPTIONS

The NoteBook widget supports all the standard options of a frame widget. See the options(n)
manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —dynamicgeometry
Database Name: dynamicGeometry
Database Class: DynamicGeometry
If set to false, the size of the Notebook will match the size of the largest page. If set
to true, the size of the Notebook will match the size of the current page (therefore,
the size may change when the user selects different pages). The default value is false.
A setting of true is discouraged.

Command-Line Name: —ipadx
Database Name: ipadX
Database Class: Pad
The amount of internal horizontal paddings around the sides of the page subwidgets.

About this Manual

Command-Line Name: —ipady
Database Name: ipadY
Database Class: Pad
The amount of internal vertical paddings around the sides of the page subwidgets.

SUBWIDGETS

Name: nbframe
Class: tixNoteBookFrame

The "note book frame" widget that displays ths tabs of the notebook. Most of the
display options of the page tabs are controlled by this subwidget. For example, if you
need to choose a different font to display the tab names of the pages, the color of the
inactive tabs or the color behind the tabs, you can configure the options of the
nbframe subwidget. See the manual page of tixNoteBookFrame for more details.

In addition, all the page subwidgets created as a result of the add command can be accessed
by the subwidget command. They are identified by the pageName parameter to the
add command.

DESCRIPTION

The tixNoteBook command creates a new window (given by the pathName argument) and
makes it into a NoteBook widget. Additional options, described above, may be specified on
the command line or in the option database to configure aspects of the NoteBook widget such
as its cursor and relief. The NoteBook widget can be used to display many windows in a
limited space using a "notebook" metaphore. The notebook is divided into a stack of pages
(windows). At one time only one of these pages can be shown. The user can navigate through
these pages by choosing the visual "tabs" at the top of the NoteBook widget.

WIDGET COMMANDS

The tixNoteBook command creates a new Tcl command whose name is the same as the path
name of the NoteBook widget's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the NoteBook widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for NoteBook widgets:

pathName add pageName ?option value ...?
Adds a new notebook page subwidget into the NoteBook widget. Additional
parameters may be supplied to configure this page subwidget. Possible options are:

—anchor
Specifies how the information in a tab (e.g. text or a bitmap) is to be
displayed in the widget. Must be one of the values n, ne, e, se, s, sw, w, nw,
or center. For example, nw means display the information such that its
top—left corner is at the top—left corner of the widget.

—bitmap

About this Manual

Specifies a bitmap to display on the tab of this page. The bitmap is displayed
only if none of the —label or —image options are specified.

—createcmd
Specifies a TCL command to be called the first time a page is shown on the
screen. This option can be used to delay the creation of the contents of a
page until necessary. Therefore, it can be used to speed up interface creation
process especially when there are a large number of pages in a NoteBook
widget.

—-image
Specifies an image to display on the tab of this page. The image is displayed
only if the —label options is not specified.

—justify
When there are multiple lines of text displayed in a tab, this option
determines how the lines line up with each other. Must be one of left, center,
or right. Left means that the lines' left edges all line up, center means that
the lines' centers are aligned, and right means that the lines' right edges line

up.

—label
Specifies a text label string to display on the tab of this page subwidget.

—-raisecmd
Specifies a TCL command to be called whenever this page is raised by the
user.

—state
Specifies whether this page can be raised by the user. Must be either
normal or disabled.

—underline
Specifies the integer index of a character to underline in the tab. This option
is used by the default bindings to implement keyboard traversal for menu
buttons and menu entries. 0 corresponds to the first character of the text
displayed in the widget, 1 to the next character, and so on.

—wraplength
This option specifies the maximum line length of the label string on this tab.
If the line length of the label string exceeds this length, it is wrapped onto
the next line, so that no line is longer than the specified length. The value
may be specified in any of the standard forms for screen distances. If this
value is less than or equal to 0 then no wrapping is done: lines will break
only at newline characters in the text.

pathName cget option
Returns the current value of the configuration option given by option.Option may
have any of the values accepted by the tixNoteBook command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see

About this Manual

Tk_Configurelnfo for information on the format of this list). If option is specified

with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixNoteBook command.

pathName delete pageName?
Deletes the page identified by pageName.

pathName pagecget pageName option
Returns the current value of the configuration option given by option in the page
given by pageName. Option may have any of the values accepted by the add widget
command.

pathName pageconfigure pageName ?option? ?value ...?
When no option is given, prints out the values of all options of this page. If option is
specified with no value, then the command returns the current value of that option. If
one or more option—value pairs are specified, then the command modifies the given
page's option(s) to have the given value(s); in this case the command returns an
empty string. Option may be any of options accepted by the add widget command.

pathName pages
Returns a list of the names of all the pages.

pathName raise pageName
Raise the page identified by pageName.

pathName raised
Returns the name of the currently raised page.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of
the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

BINDINGS
[1]

When the user pressed the left mouse button over a notebook tab, the notebook page
associated with that tab will be raised to the top of the stack of pages.

[2]
The pages can also be selected using the keyboard. The user can type the <Tab> key
to cycle among the set of pages. When the focus appears on the desired page, the
user can type <Return> or <space> to select that page. Or, if the user wants to
cancel the selection, he/she can type the <Escape> key.

About this Manual

KEYWORDS

notebook widget

tixOptionMenu — Create and manipulate tixOptionMenu
widgets

SYNOPSIS

tixOptionMenu pathName ?options?

SUPER-CLASS

The TixOptionMenu class is derived from the TixLabelWidget class and inherits all the
commands, options and subwidgets of its super—class.

STANDARD OPTIONS

The OptionMenu widget supports all the standard Tix widget options. See the
Tix—Options manual entry for details on the standard Tix widget options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —command

Database Name: command

Database Class: Command
Specifies the command to be called when the —value option of the OptionMenu is
changed. The command will be called with one arguments —— the new value of the
OptionMenu widget.

Command-Line Name: —disablecallback

Database Name: disableCallback

Database Class: DisableCallback
A boolean value indicating whether callbacks should be disabled. When set to true,
the TCL command specified by the —command option is not executed when the
—value of the OptionMenu widget changes.

Command-Line Name: —dynamicgeometry

Database Name: dynamicGeometry

Database Class: DynamicGeometry
A boolean value indicating whether the size of the menubutton subwidget should
change dynamically to match the width of the currently selected menu entry. If set to
false (the default), the the size of the menubutton subwidget will be wide enough to
display every menu entry fully and does not change when the user selects different

About this Manual

entries.

Command-Line Name: —label
Database Name: label
Database Class: Label
Specifies the string to display as the label of this OptionMenu widget.

Command-Line Name: —labelside

Database Name: labelSide

Database Class: LabelSide
Specifies where the label should be displayed relative to the entry subwidget. Valid
options are: top, left, right, bottom, none or acrosstop.

Command-Line Name: —state

Database Name: state

Database Class: State
Specifies the whether the OptionMenu widget is normal or disabled. Only the values
"normal" and "disabled" are recognized.

Command-Line Name: -value

Database Name: value

Database Class: Value
Specifies the value of the OptionMenu. The value of the OptionMenu widget is the
name of the item currently displayed by its menubutton subwidget.

Command-Line Name: —variable

Database Name: variable

Database Class: Variable
Specifies the global variable in which the value of the OptionMenu should be stored.
The value of the OptionMenu will be automatically updated when this variable is
changed.

SUBWIDGETS

Name: menu
Class: Menu

The menu subwidget, which is popped up when the user press the
menubutton subwidget.

Name: menubutton
Class: Menubutton

The menubutton subwidget.

DESCRIPTION

The tixOptionMenu command creates a new window (given by the pathName argument)
and makes it into a OptionMenu widget. Additional options, described above, may be
specified on the command line or in the option database to configure aspects of the
OptionMenu such as its cursor and relief.

About this Manual

WIDGET COMMANDS

The tixOptionMenu command creates a new Tcl command whose name is the same as the
path name of the OptionMenu's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the OptionMenu widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for OptionMenu widgets:

pathName add type name ?option value ...?
Adds a new item into the OptionMenu widget. type must be either command or
separator. The options may be any of the valid options for the command or
separator menu entry types for the TK menu widget class, except —command.

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixOptionMenu command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixOptionMenu command.

pathName delete name
Deletes the menu entry identified by name.

pathName disable name
Disables the menu entry identified by name.

pathName enable name
Enables the menu entry identified by name.

pathName entrycget name option
Returns the current value of the configuration option given by option in the menu
entry identified by name. Option may have any of the values accepted by the
add widget command.

pathName entryconfigure name ?option? ?value option value ...?
Query or modify the configuration options of the menu entry identified by name. If
no option is specified, returns a list describing all of the available options for the
menu entry (see Tk_Configurelnfo for information on the format of this list). If
option is specified with no value, then the command returns a list describing the one
named option (this list will be identical to the corresponding sublist of the value
returned if no option is specified). If one or more option—value pairs are specified,
then the command modifies the given option(s) to have the given value(s); in this

About this Manual

case the command returns an empty string. Option may have any of the values
accepted by the add widget command.

pathName entries
Returns the names of all the entries currently in the OptionMenu widget.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of

the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

KEYWORDS

option menywidget

tixPanedWindow — Create and manipulate tixPanedWindow
widgets

SYNOPSIS

tixPanedWindow pathName ?options?

STANDARD OPTIONS

The PanedWindow widget supports all the standard options of a frame widget. See the
options manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Name: command
Class: Command
Switch: —command

Specifies the command to invoke when the panes change their sizes. This command
is called with a list of integers that record the new sizes of the panes. The sizes of the
panes are listed in the order of the panes' creation.

Command-Line Name: —dynamicgeometry

Database Name: dynamicGeometry

Database Class: DynamicGeometry
If set to true, the size of the PanedWindow will dynamically change if the size of any
of its panes changes. Otherwise, the size of the PanedWindow will only increase
when size of any of its panes changes and will not decrease. The default value is
true.

About this Manual

Command-Line Name: —handleactivebg

Database Name: handleActiveBg

Database Class: HandleActiveBg
Specifies the active background color of the resize handles. When the mouse cursor
enters a resize handle, the resize handle will adopt the active background color.

Command-Line Name: —handlebg
Database Name: handleBg
Database Class: Background
Specifies the normal background color of the resize handles.

Command-Line Name: —height
Database Name: height
Database Class: Height
Specifies the desired height for the window.

Command-Line Name: —orientation
Database Name: orientation
Database Class: Orientation
Specifies the orientation of the panes. Must be either vertical or horizontal.

Command-Line Name: —paneborderwidth or —panebd
Database Name: paneBorderWidth
Database Class: PaneBorderWidth

Specifies the border width of the panes.

Command-Line Name: —panerelief
Database Name: paneRelief
Database Class: PaneRelief
Specifies the border relief of the panes.

Command-Line Name: —separatoractivebg

Database Name: separatorActiveBg

Database Class: SeparatorActiveBg
Specifies the active background color of the separators. When the user grabs a resize
handle, the separators will adopt the active background color.

Command-Line Name: —separatorbg
Database Name: separatorBg
Database Class: Background
Specifies the normal background color of the separators.

Command-Line Name: —width
Database Name: width
Database Class: Width
Specifies the desired width for the window.

SUBWIDGETS

All the pane subwidgets created as a result of the add command can be accessed by the
subwidget command. They are identified by the paneName parameter to the add command.

About this Manual

DESCRIPTION

The tixPanedWindow command creates a new window (given by the pathName argument)
and makes it into a PanedWindow widget. Additional options, described above, may be
specified on the command line or in the option database to configure aspects of the
PanedWindow widget such as its cursor and relief.

The PanedWindow widget allows the user to interactively manipulate the sizes of several
panes. The panes can be arranged either vertically or horizontally. Each individual pane may
have upper and lower limits of its size. The user changes the sizes of the panes by dragging
the resize handle between two panes.

WIDGET COMMAND

The tixPanedWindow command creates a new Tcl command whose name is the same as the
path name of the PanedWindow widget's window. This command may be used to invoke

various operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the frame widget's path name.
Option and the args determine the exact behavior of the command. The following commands
are possible for PanedWindow widgets:

pathName add paneName ?option value ...?
Adds a new pane subwidget with the name paneName into the PanedWindow
widget. Additional configuration options can be given to configure the new button
subwidget. Three configuration options are supported:

—after pane
Specifies that the new pane should be placed after pane in the list of panes in
this PanedWindow widget.

—at integer
Specifies the position of the new pane in the list of panes in this
PanedWindow widget. 0 means the first position, 1 means the second, and so
on. In addition, end means the end of the list.

—before pane
Specifies that the new pane should be placed before pane in the list of panes
in this PanedWindow widget.

—expand factor
Specifies the expand/shrink factor of this pane. Factor must be a
non-negative floating point number. The default value is 0.0. The
expand/shrink factor is used to calculate how much each pane should grow
or shrink when the size of the PanedWindow main window is changed.
When the main window expands/shrinks by n pixels, then pane i will
grow/shrink by about n * factor(i) / summation(factors), where factor(i) is
the expand/shrink factor of pane i and summation(factors) is the summation
of the expand/shrink factors of all the panes. If summation(factors) is 0.0,
however, only the last visible pane will be grown or shrunk.

About this Manual

—min integer
Specifies the minimum size, in pixels, of the new pane; the default is 0.

—max integer
Specifies the maximum size, in pixels, of the new pane; the default is 10000.

—size integer
Specifies the size, in pixels, of the new pane; if the —size option is not given,
or set to the empty string, the PanedWindow widget will use the natural size
of the pane subwidget.

pathName cget option
Returns the current value of the configuration option given by option. Option may be
—min, —max and/or —size, or any option accepted by the Tk frame widget.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may be any of the non-static options of
the PanedWindow widget.

pathName delete paneName
Removes the pane given by paneName and deletes its contents.

pathName forget paneName
Removes the pane given by paneName but does not delete its contents. This pane can
be later added back to the PanedWindow widget by the manage method.

pathName manage paneName ?option value ...?
Adds the pane given by paneName back to the PanedWindow widget.
PaneName must be already forgotten by the forget method. Additional
option—value pairs, same as those accepted by the add method, can be given to
control the appearance and position of the pane.

pathName panecget paneName option
Returns the current value of the configuration option given by option in the pane
given by paneName. Option may have any of the values accepted by the add widget
command.

pathName paneconfigure paneName ?option? ?value ...?
When no option is given, prints out the values of all options of this pane. If option is
specified with no value, then the command returns the current value of that option. If
one or more option—value pairs are specified, then the command modifies the given
pane's option(s) to have the given value(s); in this case the command returns an
empty string. Option may be —min, —max and/or —size, or any option accepted by
the Tk frame widget. The sizes of the panes may be changed as a result of calling the
paneconfigure command.

About this Manual

pathName panes
Returns a list of the names of all panes.

pathName setsize paneName newSize ?direction?
Sets the size of the pane specified by paneName to newSize. The direction parameter
specifies in which direction the pane should grow/shrink. Possible values are next:
the pane will grow or shrink by moving the boundary between itself and the pane to
its right or bottom; prev: the pane will grow or shrink by moving the boundary
between itself and the pane to its left or top.

pathName subwidget name ?args?
When no options are given, returns the pathname of the subwidget of the specified
name.

When options are given, the widget command of the specified subwidget will be
called with these options.

BINDINGS

The panes' sizes will be changed when the user drags the handles. The change in the panes'
sizes may be subjected to the —min, -max and —size options of the panes.

KEYWORDS

T1X, Container Widget

tixPopupMenu — Create and manipulate tixPopupMenu
widgets

SYNOPSIS
tixPopupMenu pathName ?options?
SUPER-CLASS

The tixPopupMenu class is derived from the TixShell class and inherits all the commands,
options and subwidgets of its super—class.

STANDARD OPTIONS

The PopupMenu widget supports all the standard options of a frame widget. See the
options manual entry for details on the standard options.

About this Manual

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —buttons

Database Name: buttons

Database Class: Buttons
A Tcl list that specifies the mouse button(s) and key modifier(s) that bring up the
popup menu. Each element of this list is in turn a list that contains two elements: the
first element is an integer that indicates the mouse button that brings up the popup
menu; the second element specifies the key modifiers that should be used in
conjunction with the mouse button. For example, the value {{1 {Control Meta}} {3
{Any}}} specifies that the popup menu can be popped up by (a) pressing mouse
button 1 with either the Control or the Meta key or (b) pressing mouse button 3 with
any key modifier. The default value is {{3 {Any}}}: only mouse button 3 brings up
the popup menu.

Command-Line Name: —postcmd

Database Name: postCmd

Database Class: PostCmd
Specifies a command to be evaluated just before the menu is about to pop-up. This
command is called with two default arguments: the root x—y coordinates where the
user has pressed the mouse button. This command must return a boolean value: a
false indicates that the menu shouldn't be popped up at this point; a true indicates
that the menu should be popped up. This option can be used to find out where the
user has pressed the mouse-button and optionally disable the popup menu over
certain screen areas.

Command-Line Name: —spring

Database Name: spring

Database Class: Spring
When set to true, the menu will be automatically popped down if the user releases
the mouse button outside of the menu and no menu commands will be invoked. This
makes it easy for the user to cancel the popup menu without pressing the Escape key.
The default value is true.

Command-Line Name: —state

Database Name: state

Database Class: State
Must be either disabled or normal. The PopupMenu widget will not pop up unless
its —state is set to normal.

Command-Line Name: —title

Database Name: title

Database Class: Title
Specifies a text string to display inside the menubutton subwidget, as the title of this
PopupMenu.

SUBWIDGETS

Name: menu
Class: Menu

The menu subwidget.

About this Manual

Name: menubutton
Class: Menubutton

The menubutton subwidget.

DESCRIPTION

The tixPopupMenu command creates a new window (given by the pathName argument) and
makes it into a PopupMenu widget. Additional options, described above, may be specified on
the command line or in the option database to configure aspects of the PopupMenu widget
such as its cursor and relief. The Tix PopupMenu widget can be used as a replacement of the
tk_popup command. The advantage of the Tix PopupMenu widget is it requires less
application code to manipulate. Also, it provides a title for the popup menu, which is not
available from tk_popup.

WIDGET COMMANDS

The tixPopupMenu command creates a hew Tcl command whose name is the same as the
path name of the PopupMenu widget's window. This command may be used to invoke

various operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the PopupMenu widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for PopupMenu widgets:

pathName bind widget ?widget ...?
Binds this PopupMenu to one or more widgets. The PopupMenu will be activated
when the user presses the right mouse button over these widgets.

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixPopupMenu command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixPopupMenu command.

pathName post widget x y
Posts the PopupMenu inside the widget at the coordinate x,y.

pathName unbind widget ?widget ...?
Cancels the PopupMenu's binding with the widget(s).

pathName subwidget name ?args?

About this Manual

When no options are given, this command returns the pathname of the subwidget of
the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

KEYWORDS

popup menpwidget

tixScrolledHList — Create and manipulate Tix ScrolledHList
widgets

SYNOPSIS

tixScrolledHList pathName ?options?

STANDARD OPTIONS

—anchor. anchor. Anchor

—background or —bg. background, Background
—borderWidth

—cursor. cursor, Cursor

—relief. relief. Relief

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —height
Database Name: height
Database Class: Height
Specifies the desired height for the window, in pixels.

Command-Line Name: —scrollbar
Database Name: scrollbar
Database Class: Scrollbar
Specifies the display policy of the scrollbars. The following values are recognized:

auto ?+x? ?-x? ?+y? ?-y?
When -scrollbar is set to "auto”, the scrollbars are shown only when needed.
Additional modifiers can be used to force a scrollbar to be shown or hidden. For
example, "auto —y" means the horizontal scrollbar should be shown when needed
but the vertical scrollbar should always be hidden; "auto +x" means the vertical
scrollbar should be shown when needed but the horizontal scrollbar should always be
shown, and so on.

both

About this Manual

Both scrollbars are shown

none
The scrollbars are never shown.
X
Only the horizontal scrollbar is shown;
y

Only the vertical scrollbar is shown.

Command-Line Name: —width
Database Name: width
Database Class: Width
Specifies the desired width for the window, in pixels.

SUBWIDGETS

Name: hsb
Class: Scrollbar

The horizontal scrollbar subwidget.

Name: hlist
Class: Hlist

The tixHList subwidget inside the ScrolledHList widget.

Name: vsb
Class: Scrollbar

The vertical scrollbar subwidget.

DESCRIPTION

The tixScrolledHList command creates a new window (given by the pathName argument)
and makes it into a ScrolledHList widget. Additional options, described above, may be
specified on the command line or in the option database to configure aspects of the
ScrolledHList widget such as its cursor and relief.

WIDGET COMMANDS

The tixScrolledHList command creates a new Tcl command whose name is the same as the
path name of the ScrolledHList widget's window. This command may be used to invoke

various operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the ScrolledHList widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for ScrolledHList widgets:

pathName cget option

About this Manual

Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixScrolledHList command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixScrolledHList command.

pathName subwidget name ?args?
When no additional arguments are given, returns the pathname of the subwidget of

the specified name. When no additional arguments are given, the widget command
of the specified subwidget will be called with these parameters.

KEYWORDS

scroll, hierarchical listboxwidget

tixScrolledListBox — Create and manipulate Tix
ScrolledListBox widgets

SYNOPSIS

tixScrolledListBox pathName ?options?

STANDARD OPTIONS

—anchor. anchor. Anchor

—background or —bg. background, Background
—borderWidth

—cursor. cursor, Cursor

—relief. relief. Relief

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —anchor
Database Name: anchor
Database Class: Anchor

About this Manual

Specifies the alignment of the items inside the listbox subwidget. Only the values

w and e are allowed. When set to w, the listbox is automatically aligned to the
beginning of the items. When set to e, the listbox is automatically aligned to the end
of the items. Automatically alignment only happens when the ScrolledListBox
widget changes its size.

Command-Line Name: —browsecmd

Database Name: browsecmd

Database Class: BrowseCmd
Specifies the command to be called when the user browses the elements inside the
listbox subwidget (see the BINDINGS section below).

Command-Line Name: —command

Database Name: command

Database Class: Command
Specifies the command to be called when the user invokes the listbox subwidget (see
the BINDINGS section below).

Command-Line Name: —height
Database Name: height
Database Class: Height
Specifies the desired height for the window, in pixels.

Command-Line Name: —scrollbar
Database Name: scrollbar
Database Class: Scrollbar
Specifies the display policy of the scrollbars. The following values are recognized:

auto ?+x? ?—-x? ?2+y? ?-y?
When —scrollbar is set to "auto”, the scrollbars are shown only when needed.
Additional modifiers can be used to force a scrollbar to be shown or hidden. For
example, "auto —y" means the horizontal scrollbar should be shown when needed
but the vertical scrollbar should always be hidden; "auto +x" means the vertical
scrollbar should be shown when needed but the horizontal scrollbar should always be
shown, and so on.

both
Both scrollbars are shown
none
The scrollbars are never shown.
X
Only the horizontal scrollbar is shown;
y

Only the vertical scrollbar is shown.

Command-Line Name: —width
Database Name: width
Database Class: Width
Specifies the desired width for the window, in pixels.

About this Manual

SUBWIDGETS

Name: hsb
Class: Scrollbar

The horizontal scrollbar subwidget.

Name: listbox
Class: Listbox

The listbox subwidget inside the ScrolledListBox widget.

Name: vsb
Class: Scrollbar

The vertical scrollbar subwidget.

DESCRIPTION

The tixScrolledListBox command creates a new window (given by the pathName argument)
and makes it into a ScrolledListBox widget. Additional options, described above, may be
specified on the command line or in the option database to configure aspects of the
ScrolledListBox widget such as its cursor and relief.

WIDGET COMMANDS

The tixScrolledListBox command creates a new Tcl command whose name is the same as
the path name of the ScrolledListBox widget's window. This command may be used to

invoke various operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the ScrolledListBox widget's
path name. Option and the args determine the exact behavior of the command. The following
commands are possible for ScrolledListBox widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixScrolledListBox command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixScrolledListBox command.

pathName subwidget name ?args?

About this Manual

When no additional arguments are given, returns the pathname of the subwidget of
the specified name. When no additional arguments are given, the widget command
of the specified subwidget will be called with these parameters.

BINDINGS
[1]

If the —browsecmd option is set, the command which it referes to is called whenever
a <ButtonPress—1> or a <Motion—-1> event occurrs inside the listbox subwidget.

[2]

The command specified by the —command option is invoked when a <Double-1>
event occurrs inside the listbox subwidget.

BUGS
The capitalization of some of the commands names in Tix 3.x has been changed in Tix 4.0.

All commands that ended with box have been changed to a capitalized Box. Hence, the
command tixScrolledListbox in Tix 3.x has been changed to tixScrolledListBox in Tix 4.0

KEYWORDS

scroll, listbox, widget

tixScrolledText — Create and manipulate Tix ScrolledText
widgets

SYNOPSIS

tixScrolledText pathName ?options?

STANDARD OPTIONS

—anchor. anchor. Anchor

—background or —bg. background, Background
—borderWidth

—cursor. cursor, Cursor

—relief. relief. Relief

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —height
Database Name: height
Database Class: Height

About this Manual

Specifies the desired height for the window, in pixels.

Command-Line Name: —scrollbar
Database Name: scrollbar
Database Class: Scrollbar
Specifies the display policy of the scrollbars. The following values are recognized:

auto ?+x? ?—-x? ?2+y? ?-y?
When —scrollbar is set to "auto”, the scrollbars are shown only when needed.
Additional modifiers can be used to force a scrollbar to be shown or hidden. For
example, "auto —y" means the horizontal scrollbar should be shown when needed
but the vertical scrollbar should always be hidden; "auto +x" means the vertical
scrollbar should be shown when needed but the horizontal scrollbar should always be
shown, and so on.

both
Both scrollbars are shown
none
The scrollbars are never shown.
X
Only the horizontal scrollbar is shown;
y

Only the vertical scrollbar is shown.
Command-Line Name: —width
Database Name: width

Database Class: Width
Specifies the desired width for the window, in pixels.

SUBWIDGETS

Name: hsb
Class: Scrollbar

The horizontal scrollbar subwidget.

Name: text
Class: Text

The Text subwidget inside the ScrolledText widget.

Name: vsb
Class: Scrollbar

The vertical scrollbar subwidget.

About this Manual

DESCRIPTION

The tixScrolledText command creates a new window (given by the pathName argument)
and makes it into a ScrolledText widget. Additional options, described above, may be
specified on the command line or in the option database to configure aspects of the
ScrolledText widget such as its cursor and relief.

WIDGET COMMANDS

The tixScrolledText command creates a new Tcl command whose name is the same as the
path name of the ScrolledText widget's window. This command may be used to invoke

various operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the ScrolledText widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for ScrolledText widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixScrolledText command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixScrolledText command.

pathName subwidget name ?args?
When no additional arguments are given, returns the pathname of the subwidget of
the specified name. When no additional arguments are given, the widget command
of the specified subwidget will be called with these parameters.

KEYWORDS

scroll, text, widget

tixScrolledWindow — Create and manipulate Tix
ScrolledWindow widgets

About this Manual

SYNOPSIS

tixScrolledWindow pathName ?options?

STANDARD OPTIONS

—anchor, anchor. Anchor

—background or —bg. background, Background
—borderWidth

—cursor, cursor, Cursor

—relief, relief, Relief

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —height
Database Name: height
Database Class: Height
Specifies the desired height for the window, in pixels.

Command-Line Name: —scrollbar
Database Name: scrollbar
Database Class: Scrollbar
Specifies the display policy of the scrollbars. The following values are recognized:

auto ?+x? ?—-x? ?2+y? ?-y?
When —scrollbar is set to "auto”, the scrollbars are shown only when needed.
Additional modifiers can be used to force a scrollbar to be shown or hidden. For
example, "auto —y" means the horizontal scrollbar should be shown when needed
but the vertical scrollbar should always be hidden; "auto +x" means the vertical
scrollbar should be shown when needed but the horizontal scrollbar should always be
shown, and so on.

both
Both scrollbars are shown
none
The scrollbars are never shown.
X
Only the horizontal scrollbar is shown;
y

Only the vertical scrollbar is shown.

Command-Line Name: —width
Database Name: width
Database Class: Width
Specifies the desired width for the window, in pixels.

Command-Line Name: —xscrollincrement
Database Name: xScrollincrement
Database Class: Scrollincrement

About this Manual

Specifies by how much the window should be scrolled in the horizontal direction
when the user presses the arrows in the horizontal scrollbar. In Pixels.

Command-Line Name: —yscrollincrement

Database Name: yScrollincrement

Database Class: Scrollincrement
Specifies by how much the window should be scrolled in the vertical direction when
the user presses the arrows in the horizontal scrollbar. In pixels.

SUBWIDGETS

Name: hsb
Class: Scrollbar

The horizontal scrollbar subwidget.

Name: window
Class;_Frame

The frame subwidget which is scrolled by the ScrolledWindow widget.

Name: vsb
Class: Scrollbar

The vertical scrollbar subwidget.

DESCRIPTION

The tixScrolledWindow command creates a hew window (given by the

pathName argument) and makes it into a ScrolledWindow widget. Additional options,
described above, may be specified on the command line or in the option database to
configure aspects of the ScrolledWindow widget such as its cursor and relief.

CREATING WIDGETS INSIDE A SCROLLEDWINDOW WIDGET

To create widgets inside a ScrolledWindow widget, one must create the new widgets relative
to the window subwidget and manage them inside the window subwidget. An error will be
generated if one tries to create widgets as immediate children of the ScrolledWindow. For
example: the following is correct code, which creates new widgets inside the window
subwidget:

tixScrolledWindow .w; pack .w

set f [.w subwidget window]

button $f.b —text hi —width 40 —height 40
pack $f.b

The following example code is incorrect because it tries to create immediate children of the
ScrolledWindow .w:

tixScrolledWindow .w; pack .w
button .w.b —text hi —width 40 —height 40
pack .w.b

About this Manual

WIDGET COMMANDS

The tixScrolledWindow command creates a new Tcl command whose name is the same as
the path name of the ScrolledWindow widget's window. This command may be used to

invoke various operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the ScrolledWindow widget's
path name. Option and the args determine the exact behavior of the command. The following
commands are possible for ScrolledWindow widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixScrolledWindow command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixScrolledWindow command.

pathName subwidget name ?args?
When no additional arguments are given, returns the pathname of the subwidget of

the specified name. When no additional arguments are given, the widget command
of the specified subwidget will be called with these parameters.

KEYWORDS

scroll, window, frame containerwidget

tixSelect — Create and manipulate tixSelect widgets

SYNOPSIS

tixSelect pathName ?options?

SUPER-CLASS

The TixSelect class is derived from the TixLabelWidget class and inherits all the
commands, options and subwidgets of its super—class.

About this Manual

STANDARD OPTIONS

The Select widget supports all the standard options of a frame widget. See the
options manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —allowzero

Database Name: allowZero

Database Class: AllowZero
A boolean value that specifies whether the selection can be empty. When set to false,
at least one button subwidget must be selected at any time. Note: When the Select
widget is first constructed, the default selection is always empty, even if
—allowzero is set to false.

Command-Line Name: —buttontype

Database Name: buttonType

Database Class: ButtonType
The type of buttons to be used as subwidgets inside the Select widget. By default, the
standard Tk button widget class is used.

Command-Line Name: —command

Database Name: command

Database Class: Command
Specifies the TCL command to be executed when the —value of the Select widget is
changed. This command will be invoked with two arguments. The first is the name
of the button subwidget that has toggled. The second is a boolean value indicating
whether the button subwidget is selected. This command is executed only when the
—disableCallback option is set to false.

Command-Line Name: —disablecallback

Database Name: disableCallback

Database Class: DisableCallback
A boolean value indicating whether callbacks should be disabled. When set to true,
the TCL command specified by the —command option is not executed when the
—value of the Select widget changes.

Command-Line Name: —orientation or —orient

Database Name: orientation

Database Class: Orientation
Specifies the orientation of the button subwidgets. Only the values horizontal and
vertical are recognized. This is a static option and it can only be assigned during the
creation of the widget.

Command-Line Name: —label
Database Name: label
Database Class: Label
Specifies the string to display as the label of this Select widget.

Command-Line Name: —labelside
Database Name: labelSide
Database Class: LabelSide

About this Manual

Specifies where the label should be displayed relative to the Select widget. Valid
options are: top, left, right, bottom, none or acrosstop.

Command-Line Name: —padx

Database Name: padX

Database Class: Pad
Specifies the haorizontal padding between two neighboring button subwidgets. This is
a static option and it can only be assigned during the creation of the widget.

Command-Line Name: —padx

Database Name: padY

Database Class: Pad
Specifies the vertical padding between two neighboring button subwidgets. This is a
static option and it can only be assigned during the creation of the widget.

Command-Line Name: —radio

Database Name: radio

Database Class: Radio
A boolean value that specifies whether the Select widget should act as a radio—box.
When set to true, at most one button subwidget can be selected at any time. This is a
static option and it can only be assigned during the creation of the widget.

Command-Line Name: —selectedbg
Database Name: selectedBg
Database Class: SelectedBg
Specifies the background color of all the selected button subwidgets.

Command-Line Name: —state

Database Name: state

Database Class: State
Specifies the state of all the buttons inside the Select widget. Only the values
normal and disabled are recognized. When the state is set to disabled, all user
actions on this Select widget are ignore.

Command-Line Name: —-validatecmd

Database Name: validateCmd

Database Class: ValidateCmd
Specifies a TCL command to be called when the —value of the Select widget is about
to change. This command is called with one parameter —— the new —value entered by
the user. This command is to validate this new value by returning a value it deems
valid.

Command-Line Name: -value

Database Name: value

Database Class: Value
The value of a Select widget is a list of the names of the button subwidgets that have
been selected by the user. When you assign the value of a Select widget using the
"config —value" widget command, the TCL command specified by the
—command option will be invoked if some button subwidgets are toggled.

Command-Line Name: —variable
Database Name: variable
Database Class: Variable

About this Manual

Specifies the global variable in which the value of the Select widget should be
stored. The value of a Select widget is stored as a list of the names of the button
subwidgets that have been selected by the user. The value of the Select widget will
be automatically updated when this variable is changed.

SUBWIDGETS

Name: label
Class: Label

The label subwidget.

In addition, all the button subwidgets created as a result of the add widget command can be
accessed by the subwidget command. They are identified by the buttonName parameter to
the add widget command. Here is an example:

set s [tixSelect .s]

pack $s

$s add eat -text Eat

$s add sleep —text Sleep

$s subwidget eat config —fg green
$s subwidget sleep config —fg red

DESCRIPTION

The tixSelect command creates a new window (given by the pathName argument) and makes
it into a Select widget. Additional options, described above, may be specified on the
command line or in the option database to configure aspects of the Select widget such as its
cursor and relief. The Select widget is a container of button subwidgets. It can be used to
provide radio—box or check—box style of selection options for the user.

WIDGET COMMANDS

The tixSelect command creates a new Tcl command whose name is the same as the path
name of the Select widget's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the Select widget's path name.
Option and the args determine the exact behavior of the command. The following commands
are possible for Select widgets:

pathName add buttonName ?option value ... ?
Adds a new button subwidget with the nhame buttonName into the Select widget.
Additional configuration options can be given to configure the new button
subwidget.

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixSelect command.

pathName configure ?option? ?value option value ...?

About this Manual

Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified

with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixSelect command.

pathName invoke buttonName
Invokes the button subwidget with the name buttonName.

pathName subwidget name ?args?
When no options are given, returns the pathname of the subwidget of the specified
name. When options are given, the widget command of the specified subwidget will
be called with these options.

BINDINGS

When the user presses the left mouse button over the a button subwidget, it will be toggled
and the —value option of the tixSelect widget will be changed.

EXAMPLE

The following example creates a radio—box style iconbar for the user to choose one value
among eat, work or sleep.

set s [tixSelect .s —radio true —allowzero false]
$s add eat —bitmap [tix getbitmap eat]

$s add work —bitmap [tix getbitmap work]

$s add sleep —bitmap [tix getbitmap sleep]

KEYWORDS

choice containerwidget

tixStdButtonBox — Create and manipulate Tix
StdButtonBox widgets

SYNOPSIS

tixStdButtonBox pathName ?options?

About this Manual

STANDARD OPTIONS

—anchor, anchor. Anchor

—background or —bg. background, Background
—borderWidth

—cursor, cursor, Cursor

—relief, relief, Relief

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —orientation

Database Name: orientation

Database Class: Orientation
Static Option. Specifies the orientation of the button subwidgets. Only the values
"horizontal" and "vertical" are recognized.

Command-Line Name: —padx

Database Name: padx

Database Class: Pad
Specifies the harizontal padding between two neighboring button subwidgets in the
StdButtonBox widget.

Command-Line Name: —padx

Database Name: padx

Database Class: Pad
Specifies the vertical padding between two neighboring button subwidgets in the
StdButtonBox widget.

Command-Line Name: —state
Database Name: state
Database Class: State
Specifies the state of all the buttons inside the StdButtonBox widget. Note: Setting

this option using the config widget command will enable or disable all the buttons
subwidgets. Original states of the individual buttons are not saved.

SUBWIDGETS

Name: ok
Class: Button

The first button subwidget. By default it displays the text string "Ok"

Name: apply
Class: Button

The second button subwidget. By default it displays the text string "Apply"

Name: cancel
Class: Button

The third button subwidget. By default it displays the text string "Cancel"

About this Manual

Name: help
Class: Button

The fourth button subwidget. By default it displays the text string "Help"

DESCRIPTION

The tixStdButtonBox command creates a new window (given by the pathName argument)
and makes it into a StdButtonBox widget. Additional options, described above, may be
specified on the command line or in the option database to configure aspects of the
StdButtonBox such as its cursor and relief.

The StdButtonBox widget is a group of Standard buttons for Motif-like dialog boxes.

WIDGET COMMAND

The tixStdButtonBox command creates a new Tcl command whose name is the same as the
path name of the StdButtonBox's window. This command may be used to invoke various

operations on the widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the StdButtonBox widget's path
name. Option and the args determine the exact behavior of the command. The following
commands are possible for StdButtonBox widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixStdButtonBox command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixStdButtonBox command.

pathName invoke buttonName
Invoke the button subwidget with the name buttonName.

pathName subwidget name ?args?
When no additional arguments are given, returns the pathname of the subwidget of
the specified name.

When no additional arguments are given, the widget command of the specified subwidget
will be called with these parameters.

About this Manual

BINDINGS

TixStdButtonBox widgets have no default bindings. The button subwidgets retain their
default Tk bindings.

KEYWORDS

containerbutton box widget

tixTree — Create and manipulate tixTree widgets

SYNOPSIS
tixTree pathName ?options?

SUPER-CLASS

The TixTree class is derived from the TixScrolledHList class and inherits all the
commands, options and subwidgets of its super—class.

STANDARD OPTIONS

TixTree supports all the standard options of a frame widget. See the options manual entry
for details on the standard options.

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —browsecmd

Database Name: browseCmd

Database Class: BrowseCmd
Specifies a command to call whenever the user browses on an entry (usually by
single—clicking on the entry). The command is called with one argument, the
pathname of the entry.

Command-Line Name: —closecmd

Database Name: closeCmd

Database Class: CloseCmd
Specifies a command to call whenever an entry needs to be closed (See the
BINDINGS section below). This command is called with one argument, the
pathname of the entry. This command should perform appropriate actions to close
the specified entry. If the —closecmd option is not specified, the default closing
action is to hide all child entries of the specified entry.

Command-Line Name: —command

About this Manual

Database Name: command

Database Class: Command
Specifies a command to call whenever the user activates an entry (usually by
double—clicking on the entry). The command is called with one argument, the
pathname of the entry.

Command-Line Name: —ignoreinvoke

Database Name: ignorelnvoke

Database Class: Ignorelnvoke
A Boolean value that specifies when a branch should be opened or closed. A branch
will always be opened or closed when the user presses the (+) and (-) indicators.
However, when the user invokes a branch (by doublc—clicking or pressing
<Return>), the branch will be opened or closed only if —ignoreinvoke is set to false
(the default setting).

Command-Line Name: —opencmd

Database Name: openCmd

Database Class: OpenCmd
Specifies a command to call whenever an entry needs to be opened (See the
BINDINGS section below). This command is called with one argument, the
pathname of the entry. This command should perform appropriate actions to open the
specified entry. If the —opencmd option is not specified, the default opening action
is to show all the child entries of the specified entry.

SUBWIDGETS

Name: hlist
Class: TixHList

The hierarchical listbox that displays the tree.

Name: hsb
Class: Scrollbar

The horizontal scrollbar subwidget.

Name: vsb
Class: Scrollbar

The vertical scrollbar subwidget.

DESCRIPTION

The tixTree command creates a new window (given by the pathName argument) and makes
it into a Tree widget. Additional options, described above, may be specified on the command
line or in the option database to configure aspects of the Tree widget such as its cursor and
relief.

The Tree widget can be used to display hierachical data in a tree form. The user can adjust
the view of the tree by opening or closing parts of the tree.

About this Manual

To display a static tree structure, you can add the entries into the hlist subwidget and hide
any entries as desired. Then you can call the autosetmode method. This will set up the Tree
widget so that it handles all the open and close events automatically.

The above method is not applicable if you want to maintain a dynamic tree structure, i.e, you
do not know all the entries in the tree and you need to add or delete entries subsequently. To
do this, you should first create the entries in the hlist subwidget. Then, use the setmode
method to indicate the entries that can be opened or closed, and use the —opencmd and
—closecmd options to handle the opening and closing events.

WIDGET COMMANDS

The tixTree command creates a new Tcl command whose name is the same as the path name
of the Tree's window. This command may be used to invoke various operations on the

widget. It has the following general form:
pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the Tree widget's path name.
Option and the args determine the exact behavior of the command. The following commands
are possible for Tree widgets:

pathName autosetmode
This command calls the setmode method for all the entries in this Tree widget: if an
entry has no child entries, its mode is set to none. Otherwise, if the entry has any
hidden child entries, its mode is set to open; otherwise its mode is set to close.

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the tixTree command.

pathName close entryPath
Close the entry given by entryPath if its mode is close.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the tixTree command.

pathName getmode entryPath
Returns the current mode of the entry given by entryPath.

pathName open entryPath
Open the entry givaen by entryPath if its mode is open.

pathName setmode entryPath mode
This command is used to indicate whether the entry given by entryPath has children
entries and whether the children are visible. mode must be one of open, close or

About this Manual

none. If mode is set to open, a (+) indicator is drawn next the the entry. If mode is

set to close, a (-) indicator is drawn next the the entry. If mode is set to none, no
indicators will be drawn for this entry. The default mode is none. The open mode
indicates the entry has hidden children and this entry can be opened by the user. The
close mode indicates that all the children of the entry are now visible and the entry
can be closed by the user.

pathName subwidget name ?args?
When no options are given, this command returns the pathname of the subwidget of
the specified name. When options are given, the widget command of the specified
subwidget will be called with these options.

BINDINGS

The basic mouse and keyboard bindings of the Tree widget are the same as the bindings of
the HList widget. In addition, the entries can be opened or closed under the following
conditions:

[1]
If the mode of the entry is open, it can be opened by clicking on its (+) indicator or
double—clicking on the entry.

[2]
If the mode of the entry is close, it can be closed by clicking on its (=) indicator or
double—clicking on the entry.

KEYWORDS

tree hierarchical listboxwidget

Chapter 4: Display Items

tixDisplayStyle — Create style object for Tix display items.

SYNOPSIS

tixDisplayStyle itemType ?-stylename name? ?-refwindow pathName? ?options value ...?

DESCRIPTION

The Tix Display Items mechanism is devised to solve a general problem: many Tix widgets
(both existing and planned ones) display many items of many types simutaneously.

For example, a hierarchical listbox widget (HList) can display items of images, plain text and
subwindows in the form of a hierarchy. Another widget, the tabular listbox, (TList, currently
planned and will be released in Tix 4.1) also display items of the same types, although it
arranges the items in a tabular form. Yet another widget, the spreadsheet widget, also
displays similar types items, but in yet another format.

In these examples, the display items in different widgets are only different in how they are
arranged by the host widget. In Tix, display items are clearly separated from the host
widgets. The advantage is two—fold: first, the creation and configuration of display items
become uniform across different host widgets. Second, new display item types can be added
without the need to modify the existing host widgets.

In a way, Tix display items are similar to the items inside Tk the canvas widget. However,
unlike the Tix display items, the canvas items are not independent of the canvas widget; this
makes it impossible to use the canvas items inside other types of TK widgets.

The appearance of a display item is controlled by a set of attributes. It is observed that each
the attributes usually fall into one of two categroies: "individual" or "collective". For

example, the text items inside a HList widget may all display a different text string; however,

in most cases, the text items share the same color, font and spacing. Instead of keeping a
duplicated version of the same attributes inside each display item, it will be advantageous to
put the collective attributes in a special object called a display style. First, there is the space
concern: a host widget may have many thousands of items; keeping dupilcated attributes will
be very wasteful. Second, when it becomes necessary to change a collective attribute, such as
changing all the text items' foreground color to red, it will be more efficient to change only

the display style object than to modify all the text items one by one.

The attributes of the a display item are thus stored in two places: it has a set of item
options to store its individual attributes. Each display item is also associated with a display
style, which specifies the collective attributes of all items associated with itself.

About this Manual

The division between the individual and collective attributes are fixed and cannot be
changed. Thus, when it becomes necessary for some items to differ in their collective
attributes, two or more display styles can be used. For example, suppose you want to display
two columns of text items inside an HList widget, one column in red and the other in blue.
You can create a TextStyle object called "red", which defines a red foreground, and another
called "blue”, which defines a blue foreground. You can then associate all text items of the
first column to "red" and the second column to "blue”.

DISPLAY ITEM TYPES AND OPTIONS

Currently there are four types of display items: téxtage, imagetext and window.
(TODO: need to document the "image" item)

IMAGETEXT ITEMS

Display items of the type imagetext are used to display an image together with a text string.
Imagetext items support the following options:

ITEM OPTIONS

Command-Line Name: —bitmap
Database Name: bitmap
Database Class: Bitmap
Specifies the bitmap to display in the item.

Command-Line Name: —image

Database Name: image

Database Class: Image
Specifies the image to display in the item. When both the —bitmap and
—image options are specified, only the image will be displayed.

Command-Line Name: —style

Database Name: imageTextStyle

Database Class: ImageTextStyle
Specifies the display style to use for this item. Must be the name of a
imagetext display style that has already be created by the
tixDisplayStyle command.

Command-Line Name: —showimage

Database Name: showlmage

Database Class: Showlmage
A Boolean value that specifies whether the image/bitmap should be
displayed.

Command-Line Name: —showtext
Database Name: showText
Database Class: ShowText
A Boolean value that specifies whether the text string should be displayed.

Command-Line Name: —text
Database Name: text
Database Class: Text

About this Manual

Specifies the text string to display in the item.

Command-Line Name: —underline

Database Name: underline

Database Class: Underline
Specifies the integer index of a character to underline in the text string in the
item. O corresponds to the first character of the text displayed in the widget,
1 to the next character, and so on.

STYLE OPTIONS

The style information of imagetext items are stored in the imagetext display style. The
following options are supported:

STANDARD OPTIONS

activeBackground activeForeground
anchor background

disabledBackground disabledForeground
foreground font

justify padX

padY selectBackground
selectForeground wrapLength

See the options manual entry for details on the standard options.
STYLE-SPECIFIC OPTIONS

Name: gap
Class: Gap
Switch: —gap

Specifies the distance between the bitmap/image and the text string, in
number of pixels.

TEXT ITEMS

Display items of the type text are used to display a text string in a widget. Text items support
the following options:

ITEM OPTIONS

Command-Line Name: —-style

Database Name: textStyle

Database Class: TextStyle
Specifies the display style to use for this text item. Must be the name of a
text display style that has already be created by the
tixDisplayStyle command.

Command-Line Name: —text
Database Name: text
Database Class: Text

About this Manual

Specifies the text string to display in the item.

Command-Line Name: —underline
Database Name: underline
Database Class: Underline
Specifies the integer index of a character to underline in the item. 0
corresponds to the first character of the text displayed in the widget, 1 to the
next character, and so on.
STYLE OPTIONS

STANDARD OPTIONS

activeBackground activeForeground
anchor background

disabledBackground disabledForeground
foreground font

justify padX

padY selectBackground
selectForeground wrapLength

See the options manual entry for details on the standard options.

WINDOW ITEMS

Display items of the type window are used to display a sub—window in a widget.
Window items support the following options:

ITEM OPTIONS

Command-Line Name: —-style

Database Name: windowStyle

Database Class: WindowStyle
Specifies the display style to use for this window item. Must be the name of
a window display style that has already be created by the
tixDisplayStyle command.

Command-Line Name: —window or —widget
Database Name: window
Database Class: Window
Specifies the sub—window to display in the item.
STYLE OPTIONS
STANDARD OPTIONS
anchor padX padY

See the options manual entry for details on the standard options.

CREATING DISPLAY ITEMS

Display items do not exist on their and thus they cannot be created independently of the
widgets they reside in. As a rule, display items are created by special widget commands of

About this Manual

their "host" widgets. For example, the HList widgets has a command item which can be used
to create new display items. The following code creates a new imagetext item at the third
column of the entry foo inside an HList widget:

tixHList .h —columns 3
.h add foo
.h item create foo 2 —itemtype imagetext —text Hello —image imagel

The item create command of the HList widget accepts a variable number of arguments. The
special argument —itemtype specifies which type of display item to create. Options that are
valid for this type of display items can then be specified by one or more option—value pairs.

After the display item is created, they can then be configured or destroyed using the
commands provided by the host widget. For example, the HList widget has the command
item configure, item cget and item delete for accessing the display items.

CREATING AND MANIPULATING DISPLAY STYLES

Display styles are created by the command tixDisplayStyle:

itemType must be one of the existing display items types such as text, imagetext, window or
any new types added by the user. Additional arguments can be given in one or more
option—value pairs. option can be any of the valid option for this display style or any of the
following:

—stylename name
Specifies a name for this style. If unspecified, then a default name will be chosen for
this style.

—-refwindow pathName
Specifies a window to use for determine the default values of the display type. If
unspecified, the main window will be used. Default values for the display types can
be set via the options database. The following example sets the
—disablebackground and —disabledforeground options of a text display style via

the option database:

option add *table.list*disabledForeground blue
option add *table.list*disabledBackground darkgray
tixDisplayStyle text —refwindow .table.list —fg red

By using the option database to set the options of the display styles, we can advoid
hard-coding the option values and give the user more flexibility in customization. See
option(n) for a detailed description of the option database.

STYLE COMMAND

The tixDisplayStyle command creates a new Tcl command whose name is the same as the
name of the newly created display style. This command may be used to invoke various

operations on the display style. It has the following general form:
styleName option ?arg arg ...?

styleName is the name of the command. Option and the args determine the exact behavior of
the command. The following commands are possible:

About this Manual

styleName cget option
Returns the current value of the configuration option given by option. Option may
have any of the valid options of this display style.

styleName configure ?option? ?value option value ...?
Query or modify the configuration options of the display style. If no option is
specified, returns a list describing all of the available options for styleName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given option(s) to have the given value(s); in this case the command
returns an empty string. Option may have any of the valid options of this display
style.

styleName delete
Destroy this display style object.

EXAMPLE

The following example creates two columns of data in a HList widget. The first column is in
red and the second column in blue. The colors of the columns are controlled by two different
text styles. Also, the anchor and font of the second column is chosen so that the income data
is aligned properly.

set courier {courier 14}

set h [tixHList .h —columns 2]; pack $h

set red [tixDisplayStyle text —fg #800000]

set blue [tixDisplayStyle text —fg #000080 \
—anchor e —font $courier]

foreach n {{Joe $10,000} {Peter $20,000} {Raj $90,000}} {
set entry [$h addchild {}]
$h item create $entry 0 —itemtype text \
—text [lindex $n 0] —style $red
$h item create $entry 1 —itemtype text \
—text [lindex $n 1] —style $blue
}

KEYWORDS

display item display style imagetext

Chapter 5: Image Types

compound — multi-line compound image type.

SYNOPSIS

image create compound ?name? ?options?

DESCRIPTION

Compound image types can be used to create images that consists of multiple horizontal
lines; each line is composed of a series of items (texts, bitmaps, images or spaces) arranged
from left to right. Compound images are mainly used to embed complex drawings into
widgets that support the —image option. As shown in the EXAMPLE section below, a
compound image can be used to display a bitmap and a text string simutaneously in a TK
button widget.

CREATING COMPOUND IMAGES

Like all images, compound images are created usingnaige create command. Compound
images support the following options:

—background color
Specifies the background color of the compound image. This color is also used as the
default background color for the bitmap items in the compound image.

—borderwidth pixels
Specifies a non—negative value indicating the width of the 3—-D border drawn around
the compound image.

—font font
Specifies the default font for the text items in the compound image.

—foreground color
Specifies the default foreground color for the bitmap and text items in the compound
image.

—padx value
Specifies a non—negative value indicating how much extra space to request for the
compound image in the X—direction. The value may have any of the forms
acceptable to Tk_GetPixels.

—pady value

About this Manual

Specifies a non—-negative value indicating how much extra space to request for the
compound image in the Y-direction.

—relief value
Specifies the 3-D effect desired for the background of the compound image.
Acceptable values are raised, sunken, flat, ridge, and groove.

—showbackground value
Specifies whether the background and the 3D borders should be drawn. Must be a
valid boolean value. By default the background is not drawn and the compound
image appears to have a transparent background.

-window pathName
Specifies the window in which the compound image is displayed. One compound
image can be displayed in only one window. When that window is destroyed, the
compound image is automatically destroyed as well. This option must be specified
when calling the image create compound command and cannot be changed by the
configure image command.

IMAGE COMMAND

When a compound image is created, Tk also creates a new command whose name is the
same as the image. This command may be used to invoke various operations on the image. It

has the following general form:
imageName option ?arg arg ...?

Option and the args determine the exact behavior of the command. The following commands
are possible for compound images:

imageName add line ?option value ...?
Creates a new line at the bottom of the compound image. Lines support the following
options:

—anchor value
Specifies how the line should be aligned along the horizontal axis. When the
values are w, sw or nw, the line is aligned to the left. When the values are c,
s or n, the line is aligned to the middle. When the values are e, se or ne, the
line is aligned to the right.

—padx value
Specifies a non—negative value indicating how much extra space to request
for this line in the X—direction.

imageName add item—type ?option value ...?
Creates a new item of the type item-type at the end of the last line of the compound
image. All types of items support these following common options:

—anchor value
Specifies how the item should be aligned along the vertical axis. When the
values are n, nw or ne, the item is aligned to the top of the line. When the
values are ¢, w or e, the item is aligned to the middle of the line. When the
values are s, se or sw, the item is aligned to the bottom of the line.

About this Manual

—padx value
Specifies a non—negative value indicating how much extra space to request
for this item in the X—direction.

—pady value
Specifies a non—negative value indicating how much extra space to request
for this item in the Y—direction.

item—type can be any of the following:

imageName add bitmap ?option value ...?
Creates a new bitmap item of at the end of the last line of the compound image.
Additional options accepted by the bitmap type are:

—background color
Specifies the background color of the bitmap item.

—bitmap name
Specifies a bitmap to display in this item, in any of the forms acceptable to

Tk_GetBitmap.

—foreground color
Specifies the foreground color of the bitmap item.

imageName add image ?option value ...?
Creates a new image item of at the end of the last line of the compound image.
Additional options accepted by the image type are:

—-image name
Specifies an image to display in this item. name must have been created with
theimage create command.

imageName add space ?option value ...?
Creates a new space item of at the end of the last line of the compound image. Space
items do not display anything. They just acts as space holders that add additional
spaces between items inside a compound image. Additional options accepted by the
image type are:

—-width value
Specifies the width of this space. The value may have any of the forms
acceptable to Tk_GetPixels.

—height value
Specifies the height of this space. The value may have any of the forms
acceptable to Tk_GetPixels.

imageName add text ?option value ...?
Creates a new text item of at the end of the last line of the compound image.
Additional options accepted by the text type are:

—background color
Specifies the background color of the text item.

About this Manual

—font name
Specifies the font to be used for this text item.

—foreground color
Specifies the foreground color of the text item.

—justify value
When there are multiple lines of text displayed in a text item, this option
determines how the lines line up with each other. value must be one of left,
center, or right. Left means that the lines' left edges all line up,
center means that the lines' centers are aligned, and right means that the
lines' right edges line up.

—text string
Specifies a text string to display in this text item.

—underline value
Specifies the integer index of a character to underline in the text item. O
corresponds to the first character of the text displayed in the text item, 1 to
the next character, and so on.

—wraplength value
This option specifies the maximum line length of the label string on this text
item. If the line length of the label string exceeds this length, it is wrapped
onto the next line, so that no line is longer than the specified length. The
value may be specified in any of the standard forms for screen distances. If
this value is less than or equal to 0 then no wrapping is done: lines will break
only at newline characters in the text.

imageName cget option

Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the image create compound command.

imageName configure ?option? ?value option value ...?

EXAMPLE

Query or modify the configuration options for the image. If no option is specified,
returns a list describing all of the available options for imageName (see
Tk_Configurelnfo for information on the format of this list). If option is specified

with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given option(s) to have the given value(s); in this case the command
returns an empty string. Option may have any of the values accepted by the image
create compound command, except the —window option

The following example creates a compound image with a bitmap and a text string and places
this image into a Tk button widget. Notice that the image must be created after the creation
of the window that it resides in.

set btn [button .b]
set img [image create compound —window $btn]
$img add line

About this Manual

$img add bitmap —bitmap warning

$img add space -width 8

$img add text —text "Warning" —underline 0
$btn config —image $img

pack $btn

KEYWORDS

image compound

pixmap — image type for the XPM file format.

SYNOPSIS
image create pixmap ?name? ?options?
DESCRIPTION

XPM is a popular X Window image file format for storing color icons. The pixmap image
type defined by the Tix library can be used to create color images using XPM files.

CREATING PIXMAPS

Like all images, pixmaps are created usingiti@ge create command. Pixmaps support the
following options:

—data string
Specifies the contents of the source pixmap as a string. The string must adhere to the
XPM file format (e.g., as generated by the pixmap program). If both the —data and
—file options are specified, the —data option takes precedence. Please note that the
XPM file parsing code in the xpm library is extremely fragile. The first line of the
string must be "/* XPM */" or otherwise a segmatation fault will be caused.

—file name
name gives the name of a file whose contents define the source pixmap. The file
must adhere to the XPM file format (e.g., as generated by the pixmap program).

IMAGE COMMAND

When a pixmap image is created, Tk also creates a new command whose name is the same as
the image. This command may be used to invoke various operations on the image. It has the

following general form:
imageName option ?arg arg ...?

Option and the args determine the exact behavior of the command. The following commands
are possible for pixmap images:

About this Manual

imageName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the image create pixmap command.

imageName configure ?option? ?value option value ...?
Query or modify the configuration options for the image. If no option is specified,
returns a list describing all of the available options for imageName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option-value pairs are specified, then the command
modifies the given option(s) to have the given value(s); in this case the command
returns an empty string. Option may have any of the values accepted by the image
create pixmap command.

KEYWORDS

pixmap image XPM

Chapter 6: Other Commands

tix — Manipulate internal states of the Tix library

SYNOPSIS
tix option ?arg arg ...?
CONFIGURATION OPTIONS

This manual page descripts the tix command, which manipulates the internal states of the Tix
library. If you're looking for a general introduction to the Tix library, please refer to the
TixIntro manual page.

The Tix application context supports the following configuration options. Usually, these
options are set using the X resource database, i.e., in the user's .Xdefault file. For example,
to choose a different color scheme for the Tix widgets, these two lines can be added to the

user's .Xdefault file:
*TixScheme: Gray
*TixFontSet: 14Point

Command-Line Name: —binding
Database Name: binding
Database Class: Binding

This is an obsolete option.

Command-Line Name: —debug
Database Name: debug
Database Class: Debug
Specifies whether the Tix widgets should run in debug mode.

Command-Line Name: —fontset

Database Name: tixFontSet

Database Class: TixFontSet
Specifies the fontset to use for the Tix widgets. Valid options are TK, TkWin,
12Point and 14Point. TK specifies that the standard TK fonts should be used. The
default value is 14Point.

Command-Line Name: —scheme

Database Name: tixScheme

Database Class: TixScheme
Specifies the color scheme to use for the Tix widgets. Valid options are TK, TkWin,
Gray, Blue, Bisque, SGIGray and TixGray. The default value is TixGray. If you
want the standard TK color scheme, you can use the value TK. If you want to use the
TK 3.6 bisque color scheme, you can use the value Bisque.

About this Manual

Command-Line Name: —schemepriority

Database Name: tixSchemePriority

Database Class: TixSchemePriority
Specifies the priority level of the TK options set by th Tix schemes. Please refer to
the TK option manual page for a discussion of the priority level of Tix options. The
default value is 79, which makes the Tix schemes at a higher priority than the
settings in the .Xdefaults file. If you want to allow the Tix schemes to be overridden
by the settings in the .Xdefaults file, you can set the following line in you .Xdefaults
file:

*TixSchemePriority: 21

DESCRIPTION

The tix command provides access to miscellaneous elements of Tix's internal state and the
Tix application context. Most of the information manipulated by this command pertains to
the application as a whole, or to a screen or display, rather than to a particular window. The
command can take any of a number of different forms depending on the option argument.
The legal forms are:

tix addbitmapdir directory
Tix maintains a list of directory under which which the tix getimage and tix
getbitmap commands will search for image files. The standard bitmap directory is
$TIX_LIBRARY/bitmaps. The addbitmapdir command adds directory into this
list. By using this command, the image files of an applications can also be located
using the tix getimage ot tix getbitmap command.

tix cget option
Returns the current value of the configuration option given by option. Option may be
any of the options described in the CONFIGURATION OPTIONS section.

tix configure ?option? ?value option value ...?
Query or modify the configuration options of the Tix application context. If no
option is specified, returns a list describing all of the available options (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given option(s) to have the given value(s); in this case the command
returns an empty string. Option may be any of the options described in the
CONFIGURATION OPTIONS section.

tix filedialog ?class?
Returns the file selection dialog that may be shared among different modules of this
application. This command will create a file selection dialog widget when it is called
the first time. This dialog will be returned by all subsequent calls to tix filedialog.
An optional class parameter can be passed to specified what type of file selection
dialog widget is desired. Possible options_are tixFileSelectDialog or
tixExFileSelectDialog.

tix getbitmap name
Locates a bitmap file of the name name.xpm or name in one of the bitmap directories
(see the addbitmapdir command above). By using tix getbitmap, you can advoid
hard coding the pathnames of the bitmap files in your application. When successful,

About this Manual

it returns the complete pathname of the bitmap file, prefixed with the character @.
The returned value can be used to configure the —bitmap option of the TK and Tix
widgets.

tix getimage name

Locates an image file of the name name.xpm, name.xbm or name.ppm in one of the
bitmap directories (see the addbitmapdir command above). If more than one file

with the same name (but different extensions) exist, then the image type is chosen
according to the depth of the X display: xbm images are chosen on monochrome
displays and color images are chosen on color displays. By using tix getimage, you
can advoid hard coding the pathnames of the image files in your application. When
successful, this command returns the name of the newly created image, which can be
used to configure the —image option of the TK and Tix widgets.

tix option ?args ...?

Manipulates the options manitained by the Tix scheme mechanism. Available

options are:

active_bg active_fg bg

bold_font darkl_bg darkl_fg
dark2_bg dark2_fg disabled_fg
fg fixed_font font

inactive_bg inactive_fg inputl_bg
input2_bg italic_font lightl_bg
lightl_fg light2_bg light2_fg
menu_font outputl_bg output2_bg
select_bg select_fg selector

The arguments to the tix option command can take the following form(s):

tix option get option
Returns the current value of option.

tix resetoptions newScheme newFontSet ?newScmPrio?

BUGS
[1]

Resets the scheme and fontset of the Tix application to newScheme and newFontSet,
respectively. This affects only those widgets created after this call. Therefore, it is
best to call the resetoptions command before the creation of any widgets in a Tix
application. The optional parameter newScmPrio can be given to reset the priority
level of the TK options set by the Tix schemes.

In this release of Tix, the following configuration options have been disabled.
Assigning values to them will cause no effect:

—binding

—debug

—fontset

-scheme

—-schemepriority

In addition, the following options to the tix command have been disabled. Invoking
the tix command with these options will cause no effect:

resetoptions

About this Manual

[2]
Because of the way TK handles the X option database, after tixwish has started up, it
is not possible to reset the color schemes and font sets using the tix config command.
Instead, the tix resetoptions command must be used.

The tk_setPalette command does not work very well under Tix. To use it, one must follow

these steps:
tix resetoptions TK TK
tk_setPalette lightblue

KEYWORDS

file selection dialog

tixDestroy — Destroy Tix Objects

SYNOPSIS
tixDestroy objectName
DESCRIPTION

The tixDestroy destroys a Tix object whose class is declared by the tixClass keyword. When
the object is destroyed, its Destructor function is called and the memory allocated for this
object is freed.

KEYWORDS

Tix, Object

tixForm — Geometry manager based on attachment rules

SYNOPSIS

tixForm option arg ?arg ...?

About this Manual

DESCRIPTION

The tixForm command is used to communicate with the tixForm Geometry Manager, a
geometry manager that arranges the geometry of the children in a parent window according
to attachment rules. The tixForm geometry manager is very flexible and powerful; it can be
used to emulate all the existing features of the Tk packer and placer geometry managers (see
pack, place). The tixForm command can have any of several forms, depending on the

option argument:

tixForm slave ?options?
If the first argument to tixForm is a window name (any value starting with ~"."), then
the command is processed in the same way as tixForm configure.

tixForm check master
This command checks whether there is circular dependency in the attachments of the
master's slaves (see the section CIRCULAR DEPENDENCY below). It returns the
Boolean value TRUE if it discover circular dependency and FALSE otherwise.

tixForm configure slave ?—option value ...?
Sets or adjusts the attachment values of the slave window according to the —option
value argument pairs.

—b attachment
Abbreviation for the —bottom option.

—bottom attachment
Specifies an attachment for the bottom edge of the slave window. The
attachment must specied according to the section SPECIFYING
ATTACHMENTS below.

—bottomspring weight
Specifies the weight of the spring at the bottom edge of the slave window.
See the section USING SPRINGS below.

—bp value
Abbreviation for the —padbottom option.

—bs weight
Abbreviation for the —bottomspring option.

—fill master
Specifies the fillings when springs are used for this widget. The value must
be X, y, both or none.

—in master
Places the slave window into the specified master window. If the slave was
originally in another master window, all attachment values with respect to
the original master window are discarded. Even if the attachment values are
the same as in the original master window, they need to be specified again.
The -in flag, when needed, must appear as the first flag after the name of the
slave. Otherwise an error is generated.

About this Manual

- attachment
Abbreviation for the —left option.

—left attachment
Specifies an attachment for the left edge of the slave window. The
attachment must specied according to the section SPECIFYING
ATTACHMENTS below.

—leftspring weight
Specifies the weight of the spring at the left edge of the slave window. See
the section USING SPRINGS below.

—Ip value
Abbreviation for the —padleft option.

—Is weight
Abbreviation for the —leftspring option.

—padbottom value
Specifies the amount of external padding to leave on the bottom side of the
slave. The valuenay have any of the forms acceptable to Tk_GetPixels.

—padleft value
Specifies the amount of external padding to leave on the left side of the
slave.

—padright value
Specifies the amount of external padding to leave on the right side of the
slave.

—padtop value
Specifies the amount of external padding to leave on the top side of the
slave.

—padx value
Specifies the amount of external padding to leave on both the left and the
right sides of the slave.

—pady value
Specifies the amount of external padding to leave on both the top and the
bottom sides of the slave.

-r attachment
Abbreviation for the —right option.

—right attachment
Specifies an attachment for the right edge of the slave window. The
attachment must specied according to the section SPECIFYING
ATTACHMENTS below.

—rightspring weight
Specifies the weight of the spring at the right edge of the slave window. See
the section USING SPRINGS below.

About this Manual

—rp value
Abbreviation for the —padright option.

-rs weight
Abbreviation for the —rightspring option.

-t attachment
Abbreviation for the —top option.

—top attachment
Specifies an attachment for the top edge of the slave window. The
attachment must specied according to the section SPECIFYING
ATTACHMENTS below.

—topspring weight
Specifies the weight of the spring at the top edge of the slave window. See
the section USING SPRINGS below.

—tp value
Abbreviation for the —padtop option.

—ts weight
Abbreviation for the —topspring option.

tixForm forget slave ?slave ...?

Removes each of the slaves from its master and unmaps their windows. The slaves
will no longer be managed by tixForm. All attachment values with respect to their
master windows are discarded. If another slave is attached to this slave, then the
attachment of the other slave will be changed to grid attachment based on its
geometry.

tixForm grid master ?x_size y_size?

When x_size and y_size are given, this command returns the number of grids of the
master window in a pair of integers of the form {x_size y_size}. When both

X_size and y_size are given, this command changes the number of horizontal and
vertical grids on the master window.

tixForm info slave ?option?

Queries the attachment options of a slave window. option can be any of the options
accepted by the tixForm configure command. If option is given, only the value of
that option is returned. Otherwise, this command returns a list whose elements are
the current configuration state of the slave given in the same option-value form that
might be specified to tixForm configure. The first two elements in this list list are
"—in master" where master is the slave's master window.

tixForm slaves master

Returns a list of all of the slaves for the master window. The order of the slaves in
the list is the same as their order in the packing order. If master has no slaves then an
empty string is returned.

About this Manual

SPECIFYING ATTACHMENTS

One can specify an attachment for each side of a slave window managed by tixForm. An
attachment is specified in the the form "-side {anchor_point offset}". —side can be one of
—top, —bottom, —left or —right.

Offsetis given in screen units (i.e. any of the forms acceptable to Tk_GetPixels). A positive
offset indicates shifting to a position to the right or bottom of an anchor point. A negative
offset indicates shifting to a position to the left or top of an anchor point.

Anchor_point can be given in one of the following forms:

Grid Attachment
The master window is divided into a number of horizontal and vertical grids. By
default the master window is divided into 100x100 grids; the number of grids can be
adjusted by the tixForm grid command. A grid attachment anchor point is given by
a % sign followed by an integer value. For example, %0 spceifies the first grid line
(the top or left edge of the master window). %100 spceifies the last grid line (the
bottom or right edge of the master window).

Opposite Side Attachment
Opposite attachment specifies an anchor point located on the opposite side of
another slave widget, which must be managed by tixForm in the same master
window. An opposite attachment anchor point is given by the name of another
widget. For example, "tixForm .b —top {.a 0}" attaches the top side of the widget
.b to the bottom of the widget .a.

Parallel Side Attachment
Opposite attachment specifies an anchor point located on the same side of another
slave widget, which must be managed by tixForm in the same master window. An
parallel attachment anchor point is given by the sign & follwed by the name of
another widget. For example, "tixForm .b —top {&.a 0}" attaches the top side of the
widget .b to the top of the widget .a, making the top sides of these two widgets at
the same vertical position in their parent window.

No Attachment
Specifies a side of the slave to be attached to nothing, indicated by the keyword
none. When the none anchor point is given, the offser must be zero. When a side of
a slave is attached to {none 0}, the position of this side is calculated by the position
of the other side and the natural size of the slave. For example, if a the left side of a
widget is attached to {90 100}, its right side attached to {none 0}, and the natural
size of the widget is 50 pixels, the right side of the widget will be positioned at pixel
{%0 149}. When both —top and —bottom are attached to none, then by default
—top will be attached to {90 0}. When both —left and -right are attached to none,
then by default —left will be attached to {960 0}.

Shifting effects can be achieved by specifying a non—zero offset with an anchor point. In the
following example, the top side of widget .b is attached to the bottom of .a; hence .b always
appears below .a. Also, the left edge of .b is attached to the left side of .a with a 10 pixel
offest. Therefore, the left edge of .b is always shifted 10 pixels to the right of .a's left edge:

tixForm .b —left {.a 10} -top {.a 0}

About this Manual

ABBREVIATIONS: Certain abbreviations can be made on the attachment specifications:
First an offset of zero can be omitted. Thus, the following two lines are equivalent:

tixForm .b —top {.a 0} —right {%100 O}
tixForm .b —top {.a} -right {%100}

Also, because of the way TCL handles lists, when you omit the offset, you can also leave out
the braces. So you can further simplify the above to:

tixForm .b —top .a -right %100

In the second case, when the anchor point is omitted, the offset must be given. A default
anchor point is chosen according to the value of the offset. If the anchor point is O or

positive, the default anchor point %0 is used; thus, "tixForm .b —top 15" attaches the top edge
of .b to a position 15 pixels below the top edge of the master window. If the anchor point is
"—0" or negative, the default anchor point %100 is used; thus, "tixForm .a -right -2"

attaches the right edge of .a to a position 2 pixels to the left of the master window's

right edge. An further example below shows a command with its equivalent abbreviation.

tixForm .b —top {%0 10} —bottom {%100 0}
tixForm .b —top 10 —bottom -0

USING SPRINGS

To be written.

ALGORITHM OF TIXFORM

TixForm starts with any slave in the list of slaves of the master window. Then it tries to
determine the position of each side of the slave.

If the attachment of a side of the slave is grid attachment, the position of the side is readily
determined.

If the attachment of this side is none, then tixForm tries to determine the position of the
opposite side first, and then use the position of the opposite side and the natural size of the
slave to determine the position of this side.

If the attachment is opposite or parallel widget attachments, then tixForm tries to determine
the positions of the other widget first, and then use the positions of the other widget and the
natural size of the slave determine the position of this side. This recursive algorithmis carried
on until the positions of all slaves are determined.

CIRCULAR DEPENDENCY

The algorithm of tixForm will fail if a circular dependency exists in the attachments of the
slaves. For example:

tixForm .c —left .b
tixForm .b —-right .c

In this example, the position of the left side of .b depends on the right side of .c, which in
turn depends on the left side of .b.

About this Manual

When a circular dependency is discovered during the execution of the tixForm algorithm,
tixForm will generate a background error and the geometry of the slaves are undefined (and
will be arbitrary). Notice that tixForm only executes the algorithm when the specification of

the slaves' attachments is complete. Therefore, it allows intermediate states of circular
dependency during the specification of the slaves' attachments. Also, unlike the Motif Form
manager widget, tixForm defines circular dependency as "dependency in the same
dimension". Therefore, the following code fragment will does not have circular dependency
because the two widgets do not depend on each other in the same dimension (.b depends .c in
the horizontal dimension and .c depends on .b in the vertical dimension):

tixForm .b —left .c
tixForm .c —top .b

BUGS

Springs have not been fully implemented yet.

KEYWORDS

form, geometry management

tixGetBoolean — Get the boolean value of a string.

SYNOPSIS

tixGetBoolean ?—nocomplain? string

DESCRIPTION

The command tixGetBoolean returns "0" if the string is a valid TCL string for the boolean
value FALSE. It returns "1" if the string is a valid TCL string for the boolean value TRUE.

When the string is not a valid TCL boolean value and the —nocomplain option is specified,
tixGetBoolean will return "0". Otherwise it will generate an error.

tixGetint — Get the integer value of a string.

About this Manual

SYNOPSIS
tixGetlnt ?—nocomplain? ?-trunc? string
DESCRIPTION

The command tixGetInt converts any number into an integer number. By default, it will
round the number to the nearest integer. When the —trunc option is specified, the number is
truncated instead of rounded.

When the string is not a valid TCL numerical value and the —nocomplain option is specified,
tixGetInt will return "0". Otherwise it will generate an error.

tixMwm — Communicate with the Motif(tm) window
manager.

SYNOPSIS

tixMwm option pathName ?args?

COMMAND OPTIONS

tixMwm decoration pathName ?option? ?value ...?
When no options are given, this command returns the values of all the decorations
options for the toplevel window with the pathName. When only one option is given
without specifying the value, the current value of that option is returned. When more
than one "option value" pairs are passed to this command, the specified values will
be assigned to the corresponding options. As a result, the appearance of the Motif
decorations around the toplevel window will be changed. Paossible options are:
—border, -menu, —-maximize, —minimize, —resizeh and —title. The value must be a
Boolean value. The values returned by this command are undefined when the
window is not managed by mwm.

tixMwm ismwmrunning pathName
This returns true if mwm is running on the screen where the specified window is
located, false otherwise.

tixMwm protocol pathName

When no additional options are given, this command returns all protocols associated
with this toplevel window.

tixMwm protocol pathName activate protocol_name
Activate the mwm protocol message in mwm's menu.

About this Manual

tixMwm protocol pathName add protocol_name menu_message

Add a new mwm protocol message for this toplevel window. The message is
identified by the string name specified in protocol_name. A menu item will be added
into mwm's menu as specified by menu_message. Once a new mwm protocol
message is added to a toplevel, it can be catched by the TK wm protocol command.

Here is an example:

tixMwm protocol . add MY_PRINT_HELLO\
{"Print Hello" _H Ctrl<Key>H}

wm protocol . MY_PRINT_HELLO {puts Hello}

tixMwm protocol pathName deactivate protocol_name

Deactivate the mwm protocol message in mwm's menu.

tixMwm protocol pathName delete protocol_name

BUGS

Delete the mwm protocol message from mwm's menu. Please note that the window
manager protocol handler associated with this protocol (by the wm
protocol command) is not deleted automatically. You have to delete the protocol

handle explicitly. E.g.:
tixMwm protocol . delete MY_PRINT_HELLO
wm protocol . MY_PRINT_HELLO {}

On some versions of Mwm, the —border will not disappear unless —-resizeh is turned off.
Also, the —title will not disappear unless all of —title, -menu, -maximize and
—minimize are turned off.

KEYWORDS

Motif window managermwm

tixUtils — Utility commands in Tix.

SYNOPSIS

tixDescendants pathName
tixDisableAll pathName
tixEnableAll pathName
tixPushGrab ?-global? window
tixPopGrab

DESCRIPTION

tixDescendants pathName

Returns a list of all the descendant widgets of pathName plus pathName itself.

About this Manual

tixDisableAll pathName
Disables pathName and all its descendants.

tixEnableAll pathName
Enables pathName and all its descendants.

tixPushGrab ?—global? window
The tixPushGrab and tixPopGrab commands allows you to perform
"cascade—grabbing". tixPushGrab calls the grab command on window and saves
window on a grabbing stack.

tixPopGrab
tixPopGrab pops the top—most element from the grabbing stack and release its grab.
If the grabbing stack is not empty, then tixPopGrab will execute grab(n) on the
current top—most element in the grabbing stack.

NOTES

Some Tix widgets (for example, tixComboBox and tixPanedWindow) grabs the screen on
certain occasions using tixPushGrab and tixPopGrab. Therefore, if you need to grab the
screen when these widgets are present, you should also call tixPushGrab and
tixPopGrab in place of the Tk grab and grab release commands. Otherwise, the behavior
of these widgets may be undefined.

KEYWORDS

grab

Chapter 7: Executable Programs

tixwish — Windowing shell for interpreting Tix commands.

SYNOPSIS

tixwish ?fileName arg arg ...?

OPTIONS

—display display
Display (and screen) on which to display window.

—geometry geometry
Initial geometry to use for window. If this option is specified, its value is stored in
the geometry global variable of the application's Tcl interpreter.

—name name
Use name as the title to be displayed in the window, and as the name of the
interpreter for send commands.

-sync
Execute all X server commands synchronously, so that errors are reported
immediately. This will result in much slower execution, but it is useful for
debugging.

DESCRIPTION

Note: the use of the tixwish program is deprecated. You should use the standard
wish program from Tk and access Tix via the "package require Tix" command.

Tixwish is a simple program consisting of the Tcl command language, the Tk toolkit, the Tix
library, and a main program that reads commands from standard input or from a file. It
creates a main window and then processes Tcl commands. If tixwish is invoked with no
arguments, or with a first argument that starts with =", then it reads Tcl commands
interactively from standard input. It will continue processing commands until all windows
have been deleted or until end—-of-file is reached on standard input. If there exists a file
ixwishrc in the home directory of the user, tixwish evaluates the file as a Tcl script just
before reading the first command from standard input.

If tixwish is invoked with an initial fleName argument, then fileName is treated as the name
of a script file. Tixwish will evaluate the script in fileName (which presumably creates a user
interface), then it will respond to events until all windows have been deleted. Commands will
not be read from standard input. There is no automatic evaluation of .tixwishrc in this case,

About this Manual

but the script file can always source it if desired.
OPTIONS

Tixwish automatically processes all of the command-line options described in the
OPTIONS summary above. Any other command-line arguments besides these are passed
through to the application using the argc and argv variables described later.

APPLICATION NAME AND CLASS

The name of the application, which is used for purposes such as send commands, is taken
from the —name option, if it is specified; otherwise it is taken from fileName, if it is

specified, or from the command name by which tixwish was invoked. In the last two cases, if
the name contains a ~'/" character, then only the characters after the last slash are used as the

application name.
The class of the application, which is used for purposes such as specifying options with a

RESOURCE_MANAGER property or .Xdefaults file, is the same as its name except that
the first letter is capitalized.

VARIABLES

Tixwish sets the following Tcl variables:

argc
Contains a count of the number of arg arguments (0 if none), not including the
options described above.

argv
Contains a Tcl list whose elements are the arg arguments (not including the options
described above), in order, or an empty string if there are no arg arguments.

argv0
Contains fileName if it was specified. Otherwise, contains the name by which
tixwish was invoked.

geometry

If the —geometry option is specified, tixwish copies its value into this variable. If the
variable still exists after fileName has been evaluated, tixwish uses the value of the
variable in a wm geometry command to set the main window's geometry.

tcl_interactive

Contains 1 if tixwish is reading commands interactively (fileName was not specified
and standard input is a terminal-like device), 0 otherwise.

X RESOURCES

Tixwish makes use of several X Resources to determine the Toolkit Options for the Tix
library. These X resources must be set using RESOURCE_MANAGER properties or
Xdefaults files before tixwish starts running. These resources must be associated with the
main window of the tixwish application. These options include:

About this Manual

Name: tixScheme
Class: TixScheme

Specifies the color scheme to use for the Tix application. Currently only these
schemes are supported: Blue, Gray, SGIGray, TixGray, and TK.

Name: tixFontSet
Class: TixFontSet

Specifies the FontSet to use for the Tix application. A FontSet designates the fonts to
use for different types of widgets. Currently only these FontSets are supported:
12Point, 14Point and TK.

For example, you may put these two lines in your .Xdefaults file *tixwish.tixScheme: Gray
*tixwish.tixFontSet: 12Point

SCRIPT FILES

If you create a Tcl script in a file whose first line is
#!/usr/local/bin/tixwish

then you can invoke the script file directly from your shell if you mark it as executable. This
assumes that tixwish has been installed in the default location in /usr/local/bin; if it's installed
somewhere else then you'll have to modify the above line to match. Many UNIX systems do
not allow the #! line to exceed about 30 characters in length, so be sure that the

tixwish executable can be accessed with a short file name.

PROMPTS

When tixwish is invoked interactively it normally prompts for each command with % ".
You can change the prompt by setting the variables tcl_promptl and tcl_prompt2. If
variable tcl_promptl exists then it must consist of a Tcl script to output a prompt; instead of
outputting a prompt tixwish will evaluate the script in tcl_promptl. The variable

tcl_prompt2 is used in a similar way when a newline is typed but the current command isn't
yet complete; if tcl_prompt2 isn't set then no prompt is output for incomplete commands.

KEYWORDS

shell wish Tk, toolkit

shell wish, Tk

Appendix 1: Tk Commands

This chapter includes a subset of the Tk Commands that are frequently mentioned in the Tix documentation
Please consult your Tcl/Tk documentation for other Tcl/Tk references.

frame — Create and manipulate frame widgets

SYNOPSIS

frame pathName ?options?

STANDARD OPTIONS

—borderwidth or —bd. borderWidth, BorderWidth
—Cursor, cursor, Cursor

—highlightbackaground, highlightBackaround, HighlightBackground
—highlightcolor, highlightColor, HighlightColor

—highlightthickness, highlightThickness, HighlightThickness
—relief, relief, Relief

—takefocus, takeFocus, TakeFocus

WIDGET-SPECIFIC OPTIONS

Command-Line Name: —background

Database Name: background

Database Class: Background
This option is the same as the standard background option except that its value may
also be specified as an empty string. In this case, the widget will display no
background or border, and no colors will be consumed from its colormap for its
background and border.

Command-Line Name: —class

Database Name: class

Database Class: Class
Specifies a class for the window. This class will be used when querying the option
database for the window's other options, and it will also be used later for other
purposes such as bindings. The class option may not be changed with the
configure widget command.

Command-Line Name: —colormap

Database Name: colormap

Database Class: Colormap
Specifies a colormap to use for the window. The value may be either new, in which
case a new colormap is created for the window and its children, or the name of
another window (which must be on the same screen and have the same visual as
pathName), in which case the new window will use the colormap from the specified

About this Manual

window. If the colormap option is not specified, the new window uses the same
colormap as its parent. This option may not be changed with the configure widget
command.

Command-Line Name: —container

Database Name: container

Database Class: Container
The value must be a boolean. If true, it means that this window will be used as a
container in which some other application will be embedded (for example, a Tk
toplevel can be embedded using the —use option). The window will support the
appropriate window manager protocols for things like geometry requests. The
window should not have any children of its own in this application. This option may
not be changed with the configure widget command.

Command-Line Name: —height

Database Name: height

Database Class: Height
Specifies the desired height for the window in any of the forms acceptable to
Tk_GetPixels. If this option is less than or equal to zero then the window will not
request any size at all.

Command-Line Name: —visual

Database Name: visual

Database Class: Visual
Specifies visual information for the new window in any of the forms accepted by
Tk_GetVisual. If this option is not specified, the new window will use the same
visual as its parent. The visual option may not be modified with the
configure widget command.

Command-Line Name: —width

Database Name: width

Database Class: Width
Specifies the desired width for the window in any of the forms acceptable to
Tk_GetPixels. If this option is less than or equal to zero then the window will not
request any size at all.

DESCRIPTION

The frame command creates a new window (given by the pathName argument) and makes it
into a frame widget. Additional options, described above, may be specified on the command
line or in the option database to configure aspects of the frame such as its background color
and relief. The frame command returns the path name of the new window.

A frame is a simple widget. Its primary purpose is to act as a spacer or container for complex
window layouts. The only features of a frame are its background color and an optional 3-D
border to make the frame appear raised or sunken.

WIDGET COMMAND

The frame command creates a new Tcl command whose name is the same as the path name
of the frame's window. This command may be used to invoke various operations on the
widget. It has the following general form:

About this Manual

pathName option ?arg arg ...?

PathName is the name of the command, which is the same as the frame widget's path name.
Option and the args determine the exact behavior of the command. The following commands
are possible for frame widgets:

pathName cget option
Returns the current value of the configuration option given by option. Option may
have any of the values accepted by the frame command.

pathName configure ?option? ?value option value ...?
Query or modify the configuration options of the widget. If no option is specified,
returns a list describing all of the available options for pathName (see
Tk_Configurelnfo for information on the format of this list). If option is specified
with no value, then the command returns a list describing the one named option (this
list will be identical to the corresponding sublist of the value returned if no option is
specified). If one or more option—value pairs are specified, then the command
modifies the given widget option(s) to have the given value(s); in this case the
command returns an empty string. Option may have any of the values accepted by
the frame command.

BINDINGS

When a new frame is created, it has no default event bindings: frames are not intended to be
interactive.

KEYWORDS

frame widget

image — Create and manipulate images

SYNOPSIS
image option ?arg arg ...?
DESCRIPTION

The image command is used to create, delete, and query images. It can take several different
forms, depending on the option argument. The legal forms are:

image create type ?name? ?option value ...?
Creates a new image and returns its name. type specifies the type of the image, which
must be one of the types currently defined (e.g., bitmap). name specifies the name
for the image; if it is omitted then Tk picks a name of the form imagex, where x is an

About this Manual

integer. There may be any number of option—value pairs, which provide
configuration options for the new image. The legal set of options is defined
separately for each image type; see below for details on the options for built—in
image types. If an image already exists by the given name then it is replaced with the
new image and any instances of that image will redisplay with the new contents.

image delete ?name name ...?
Deletes each of the named images and returns an empty string. If there are instances
of the images displayed in widgets, the images won't actually be deleted until all of
the instances are released. However, the association between the instances and the
image manager will be dropped. Existing instances will retain their sizes but
redisplay as empty areas. If a deleted image is recreated with another call to image
create, the existing instances will use the new image.

image height name
Returns a decimal string giving the height of image name in pixels.

image names
Returns a list containing the names of all existing images.

image type name
Returns the type of image name (the value of the type argument to image
create when the image was created).

image types
Returns a list whose elements are all of the valid image types (i.e., all of the values
that may be supplied for the type argument to image create).

image width name
Returns a decimal string giving the width of image name in pixels.

BUILT-IN IMAGE TYPES

The following image types are defined by Tk so they will be available in any Tk application.
Individual applications or extensions may define additional types.

bitmap
Each pixel in the image displays a foreground color, a background color, or nothing.
See the bitmap manual entry for more information.

photo
Displays a variety of full-color images, using dithering to approximate colors on

displays with limited color capabilities. See the photo manual entry for more
information.

KEYWORDS

height image types of imageswidth

About this Manual

options — Standard options supported by widgets

DESCRIPTION

This manual entry describes the common configuration options supported by widgets in the
Tk toolkit. Every widget does not necessarily support every option (see the manual entries

for individual widgets for a list of the standard options supported by that widget), but if a
widget does support an option with one of the names listed below, then the option has exactly
the effect described below.

In the descriptions below, "Command-Line Name" refers to the switch used in class
commands and configure widget commands to set this value. For example, if an option's
command-line switch is —foreground and there exists a widget .a.b.c, then the command

.a.b.c configure —foreground black

may be used to specify the value black for the option in the the widget .a.b.c.

Command-line switches may be abbreviated, as long as the abbreviation is unambiguous.
“Database Name" refers to the option's name in the option database (e.g. in .Xdefaults files).
“Database Class" refers to the option's class value in the option database.

Command-Line Name: —activebackground

Database Name: activeBackground

Database Class: Foreground
Specifies background color to use when drawing active elements. An element (a
widget or portion of a widget) is active if the mouse cursor is positioned over the
element and pressing a mouse button will cause some action to occur. If strict Motif
compliance has been requested by setting the tk_strictMotif variable, this option
will normally be ignored; the normal background color will be used instead. For
some elements on Windows and Macintosh systems, the active color will only be
used while mouse button 1 is pressed over the element.

Command-Line Name: —activeborderwidth

Database Name: activeBorderWidth

Database Class: BorderWidth
Specifies a non—-negative value indicating the width of the 3—-D border drawn around
active elements. See above for definition of active elements. The value may have any
of the forms acceptable to Tk_GetPixels. This option is typically only available in
widgets displaying more than one element at a time (e.g. menus but not buttons).

Command-Line Name: —activeforeground

Database Name: activeForeground

Database Class: Background
Specifies foreground color to use when drawing active elements. See above for
definition of active elements.

Command-Line Name: —anchor
Database Name: anchor
Database Class: Anchor

About this Manual

Specifies how the information in a widget (e.g. text or a bitmap) is to be displayed in
the widget. Must be one of the values n, ne, e, se, s, sw, w, nw, or center. For
example, nw means display the information such that its top—left corner is at the
top—left corner of the widget.

Command-Line Name: —background or —bg
Database Name: background
Database Class: Background
Specifies the normal background color to use when displaying the widget.

Command-Line Name: —bitmap

Database Name: bitmap

Database Class: Bitmap
Specifies a bitmap to display in the widget, in any of the forms acceptable to
Tk_GetBitmap. The exact way in which the bitmap is displayed may be affected by
other options such as anchor or justify. Typically, if this option is specified then it
overrides other options that specify a textual value to display in the widget; the
bitmap option may be reset to an empty string to re—enable a text display. In widgets
that support both bitmap and image options, image will usually override bitmap.

Command-Line Name: —borderwidth or —bd

Database Name: borderWidth

Database Class: BorderWidth
Specifies a non—-negative value indicating the width of the 3-D border to draw
around the outside of the widget (if such a border is being drawn; the relief option
typically determines this). The value may also be used when drawing 3-D effects in
the interior of the widget. The value may have any of the forms acceptable to
Tk_GetPixels.

Command-Line Name: —cursor

Database Name: cursor

Database Class: Cursor
Specifies the mouse cursor to be used for the widget. The value may have any of the
forms acceptable to Tk_GetCursor.

Command-Line Name: —disabledforeground

Database Name: disabledForeground

Database Class: DisabledForeground
Specifies foreground color to use when drawing a disabled element. If the option is
specified as an empty string (which is typically the case on monochrome displays),
disabled elements are drawn with the normal foreground color but they are dimmed
by drawing them with a stippled fill pattern.

Command-Line Name: —exportselection

Database Name: exportSelection

Database Class: ExportSelection
Specifies whether or not a selection in the widget should also be the X selection. The
value may have any of the forms accepted by Tcl_GetBoolean, such as true, false,
0, 1, yes, or no. If the selection is exported, then selecting in the widget deselects the
current X selection, selecting outside the widget deselects any widget selection, and
the widget will respond to selection retrieval requests when it has a selection. The
default is usually for widgets to export selections.

About this Manual

Command-Line Name: —font
Database Name: font
Database Class: Font
Specifies the font to use when drawing text inside the widget.

Command-Line Name: —foreground or —fg
Database Name: foreground
Database Class: Foreground
Specifies the normal foreground color to use when displaying the widget.

Command-Line Name: —highlightbackground

Database Name: highlightBackground

Database Class: HighlightBackground
Specifies the color to display in the traversal highlight region when the widget does
not have the input focus.

Command-Line Name: —highlightcolor

Database Name: highlightColor

Database Class: HighlightColor
Specifies the color to use for the traversal highlight rectangle that is drawn around
the widget when it has the input focus.

Command-Line Name: —highlightthickness

Database Name: highlightThickness

Database Class: HighlightThickness
Specifies a non—-negative value indicating the width of the highlight rectangle to
draw around the outside of the widget when it has the input focus. The value may
have any of the forms acceptable to Tk_GetPixels. If the value is zero, no focus
highlight is drawn around the widget.

Command-Line Name: —image

Database Name: image

Database Class: Image
Specifies an image to display in the widget, which must have been created with the
image create command. Typically, if the image option is specified then it overrides
other options that specify a bitmap or textual value to display in the widget; the
image option may be reset to an empty string to re—enable a bitmap or text display.

Command-Line Name: —-insertbackground

Database Name: insertBackground

Database Class: Foreground
Specifies the color to use as background in the area covered by the insertion cursor.
This color will normally override either the normal background for the widget (or the
selection background if the insertion cursor happens to fall in the selection).

Command-Line Name: —insertborderwidth

Database Name: insertBorderWidth

Database Class: BorderWidth
Specifies a non—-negative value indicating the width of the 3-D border to draw
around the insertion cursor. The value may have any of the forms acceptable to
Tk_GetPixels.

Command-Line Name: —insertofftime

About this Manual

Database Name: insertOffTime

Database Class: OffTime
Specifies a non—-negative integer value indicating the number of milliseconds the
insertion cursor should remain “"off" in each blink cycle. If this option is zero then
the cursor doesn't blink: it is on all the time.

Command-Line Name: —insertontime

Database Name: insertOnTime

Database Class: OnTime
Specifies a non—-negative integer value indicating the number of milliseconds the
insertion cursor should remain ““on" in each blink cycle.

Command-Line Name: —insertwidth

Database Name: insertWidth

Database Class: InsertWidth
Specifies a value indicating the total width of the insertion cursor. The value may
have any of the forms acceptable to Tk_GetPixels. If a border has been specified for
the insertion cursor (using the insertBorderWidth option), the border will be drawn
inside the width specified by the insertWidth option.

Command-Line Name: —jump

Database Name: jump

Database Class: Jump
For widgets with a slider that can be dragged to adjust a value, such as scrollbars,
this option determines when notifications are made about changes in the value. The
option's value must be a boolean of the form accepted by Tcl_GetBoolean. If the
value is false, updates are made continuously as the slider is dragged. If the value is
true, updates are delayed until the mouse button is released to end the drag; at that
point a single notification is made (the value ~“jumps" rather than changing
smoothly).

Command-Line Name: —justify

Database Name: justify

Database Class: Justify
When there are multiple lines of text displayed in a widget, this option determines
how the lines line up with each other. Must be one of left, center, or right.
Left means that the lines' left edges all line up, center means that the lines' centers
are aligned, and right means that the lines' right edges line up.

Command-Line Name: —orient

Database Name: orient

Database Class: Orient
For widgets that can lay themselves out with either a horizontal or vertical
orientation, such as scrollbars, this option specifies which orientation should be used.
Must be either horizontal or vertical or an abbreviation of one of these.

Command-Line Name: —padx

Database Name: padX

Database Class: Pad
Specifies a non—-negative value indicating how much extra space to request for the
widget in the X-direction. The value may have any of the forms acceptable to
Tk_GetPixels. When computing how large a window it needs, the widget will add
this amount to the width it would normally need (as determined by the width of the

About this Manual

things displayed in the widget); if the geometry manager can satisfy this request, the
widget will end up with extra internal space to the left and/or right of what it displays
inside. Most widgets only use this option for padding text: if they are displaying a
bitmap or image, then they usually ignore padding options.

Command-Line Name: —pady

Database Name: padY

Database Class: Pad
Specifies a non—-negative value indicating how much extra space to request for the
widget in the Y-direction. The value may have any of the forms acceptable to
Tk_GetPixels. When computing how large a window it needs, the widget will add
this amount to the height it would normally need (as determined by the height of the
things displayed in the widget); if the geometry manager can satisfy this request, the
widget will end up with extra internal space above and/or below what it displays
inside. Most widgets only use this option for padding text: if they are displaying a
bitmap or image, then they usually ignore padding options.

Command-Line Name: —relief

Database Name: relief

Database Class: Relief
Specifies the 3-D effect desired for the widget. Acceptable values are raised,
sunken, flat, ridge, solid, and groove. The value indicates how the interior of the
widget should appear relative to its exterior; for example, raised means the interior
of the widget should appear to protrude from the screen, relative to the exterior of the
widget.

Command-Line Name: —repeatdelay

Database Name: repeatDelay

Database Class: RepeatDelay
Specifies the number of milliseconds a button or key must be held down before it
begins to auto-repeat. Used, for example, on the up— and down-arrows in scrollbars.

Command-Line Name: —repeatinterval

Database Name: repeatinterval

Database Class: Repeatinterval
Used in conjunction with repeatDelay: once auto—repeat begins, this option
determines the number of milliseconds between auto-repeats.

Command-Line Name: —selectbackground
Database Name: selectBackground
Database Class: Foreground
Specifies the background color to use when displaying selected items.

Command-Line Name: —selectborderwidth

Database Name: selectBorderWidth

Database Class: BorderWidth
Specifies a non—negative value indicating the width of the 3-D border to draw
around selected items. The value may have any of the forms acceptable to
Tk_GetPixels.

Command-Line Name: —selectforeground
Database Name: selectForeground
Database Class: Background

About this Manual

Specifies the foreground color to use when displaying selected items.

Command-Line Name: —setgrid

Database Name: setGrid

Database Class: SetGrid
Specifies a boolean value that determines whether this widget controls the resizing
grid for its top—level window. This option is typically used in text widgets, where the
information in the widget has a natural size (the size of a character) and it makes
sense for the window's dimensions to be integral numbers of these units. These
natural window sizes form a grid. If the setGrid option is set to true then the widget
will communicate with the window manager so that when the user interactively
resizes the top—level window that contains the widget, the dimensions of the window
will be displayed to the user in grid units and the window size will be constrained to
integral numbers of grid units. See the section GRIDDED GEOMETRY
MANAGEMENT in the wm manual entry for more details.

Command-Line Name: —takefocus

Database Name: takeFocus

Database Class: TakeFocus
Determines whether the window accepts the focus during keyboard traversal (e.qg.,
Tab and Shift-Tab). Before setting the focus to a window, the traversal scripts
consult the value of the takeFocus option. A value of 0 means that the window
should be skipped entirely during keyboard traversal. 1 means that the window
should receive the input focus as long as it is viewable (it and all of its ancestors are
mapped). An empty value for the option means that the traversal scripts make the
decision about whether or not to focus on the window: the current algorithm is to
skip the window if it is disabled, if it has no key bindings, or if it is not viewable. If
the value has any other form, then the traversal scripts take the value, append the
name of the window to it (with a separator space), and evaluate the resulting string as
a Tcl script. The script must return 0, 1, or an empty string: a 0 or 1 value specifies
whether the window will receive the input focus, and an empty string results in the
default decision described above. Note: this interpretation of the option is defined
entirely by the Tcl scripts that implement traversal: the widget implementations
ignore the option entirely, so you can change its meaning if you redefine the
keyboard traversal scripts.

Command-Line Name: —text

Database Name: text

Database Class: Text
Specifies a string to be displayed inside the widget. The way in which the string is
displayed depends on the particular widget and may be determined by other options,
such as anchor or justify.

Command-Line Name: —textvariable

Database Name: textVariable

Database Class: Variable
Specifies the name of a variable. The value of the variable is a text string to be
displayed inside the widget; if the variable value changes then the widget will
automatically update itself to reflect the new value. The way in which the string is
displayed in the widget depends on the particular widget and may be determined by
other options, such as anchor or justify.

Command-Line Name: —troughcolor

About this Manual

Database Name: troughColor

Database Class: Background
Specifies the color to use for the rectangular trough areas in widgets such as
scrollbars and scales. This option is ignored for scrollbars on Windows (native
widget doesn't recognize this option).

Command-Line Name: —underline

Database Name: underline

Database Class: Underline
Specifies the integer index of a character to underline in the widget. This option is
used by the default bindings to implement keyboard traversal for menu buttons and
menu entries. 0 corresponds to the first character of the text displayed in the widget,
1 to the next character, and so on.

Command-Line Name: —wraplength

Database Name: wrapLength

Database Class: WrapLength
For widgets that can perform word-wrapping, this option specifies the maximum
line length. Lines that would exceed this length are wrapped onto the next line, so
that no line is longer than the specified length. The value may be specified in any of
the standard forms for screen distances. If this value is less than or equal to 0 then no
wrapping is done: lines will break only at newline characters in the text.

Command-Line Name: —xscrollcommand

Database Name: xScrollCommand

Database Class: ScrollCommand
Specifies the prefix for a command used to communicate with horizontal scrollbars.
When the view in the widget's window changes (or whenever anything else occurs
that could change the display in a scrollbar, such as a change in the total size of the
widget's contents), the widget will generate a Tcl command by concatenating the
scroll command and two numbers. Each of the numbers is a fraction between 0 and
1, which indicates a position in the document. 0 indicates the beginning of the
document, 1 indicates the end, .333 indicates a position one third the way through the
document, and so on. The first fraction indicates the first information in the
document that is visible in the window, and the second fraction indicates the
information just after the last portion that is visible. The command is then passed to
the Tcl interpreter for execution. Typically the xScrollCommand option consists of
the path name of a scrollbar widget followed by “set", e.g. ~.x.scrollbar set": this
will cause the scrollbar to be updated whenever the view in the window changes. If
this option is not specified, then no command will be executed.

Command-Line Name: —yscrollcommand

Database Name: yScrollCommand

Database Class: ScrollCommand
Specifies the prefix for a command used to communicate with vertical scrollbars.
This option is treated in the same way as the xScrollCommand option, except that it
is used for vertical scrollbars and is provided by widgets that support vertical
scrolling. See the description of xScrollCommand for details on how this option is
used.

About this Manual

KEYWORDS

class name standard optionswitch

Appendix 2: Tk Library References

This chapter includes a subset of the Tk Library References that are frequently mentioned in the Tix
documentation. Please consult your Tcl/Tk documentation for other Tcl/Tk references.

Tk_ConfigureWidget, Tk_Offset, Tk_Configurelnfo,
Tk_ConfigureValue, Tk _FreeOptions — process
configuration options for widgets

SYNOPSIS

#include <tk.h>

int

Tk_ConfigureWidget(interp, tkwin, specs, argc, argv, widgRec, flags)
int

Tk_Offset(type, field)

int

Tk_Configurelnfo(interp, tkwin, specs, widgRec, argvName, flags)
int

Tk_ConfigureValue(interp, tkwin, specs, widgRec, argvName, flags)
Tk _FreeOptions(specs, widgRec, display, flags)

ARGUMENTS

Tcl_Interp *interp (in)
Interpreter to use for returning error messages.

Tk_Window tkwin (in)
Window used to represent widget (needed to set up X resources).

Tk_ConfigSpec *specs (in)
Pointer to table specifying legal configuration options for this widget.

int argc (in)
Number of arguments in argv.

char **argv (in)
Command-line options for configuring widget.

char *widgRec (in/out)
Points to widget record structure. Fields in this structure get modified by
Tk_ConfigureWidget to hold configuration information.

int flags (in)
If non-zero, then it specifies an OR—ed combination of flags that control the

About this Manual

processing of configuration information. TK_CONFIG_ARGV_ONLY causes the
option database and defaults to be ignored, and flag bits TK_CONFIG_USER_BIT
and higher are used to selectively disable entries in specs.

type name type (in)
The name of the type of a widget record.

field name field (in)
The name of a field in records of type type.

char *argvName (in)
The name used on Tcl command lines to refer to a particular option (e.g. when
creating a widget or invoking the configure widget command). If non—-NULL, then
information is returned only for this option. If NULL, then information is returned
for all available options.

Display *display (in)
Display containing widget whose record is being freed; needed in order to free up
resources.

DESCRIPTION

Tk_ConfigureWidget is called to configure various aspects of a widget, such as colors,
fonts, border width, etc. It is intended as a convenience procedure to reduce the amount of
code that must be written in individual widget managers to handle configuration information.
It is typically invoked when widgets are created, and again when the configure command is
invoked for a widget. Although intended primarily for widgets, Tk_ConfigureWidget can

be used in other situations where argc—argv information is to be used to fill in a record
structure, such as configuring graphical elements for a canvas widget or entries of a menu.

Tk_ConfigureWidget processes a table specifying the configuration options that are
supported (specs) and a collection of command-line arguments (argc and argv) to fill in
fields of a record (widgRec). It uses the option database and defaults specified in specs to fill
in fields of widgRec that are not specified in argv. Tk_ConfigureWidget normally returns

the value TCL_OK; in this case it does not modify interp. If an error occurs then
TCL_ERROR is returned and Tk_ConfigureWidget will leave an error message in
interp—>result in the standard Tcl fashion. In the event of an error return, some of the fields
of widgRec could already have been set, if configuration information for them was
successfully processed before the error occurred. The other fields will be set to reasonable
initial values so that Tk_FreeOptions can be called for cleanup.

The specs array specifies the kinds of configuration options expected by the widget. Each of
its entries specifies one configuration option and has the following structure:

typedef struct {

ityppe;

chargyvName;

chatbName;

chatbiClass;

chatefValue;

ioffset;

ispecFlags;

Tk_CustomOptioncustomPtr;
} Tk_ConfigSpec;

About this Manual

The type field indicates what type of configuration option this is (e.g. TK_CONFIG_COLOR
for a color value, or TK_CONFIG_INT for an integer value). The type field indicates how to
use the value of the option (more on this below). The argvName field is a string such as
“—font" or “"-bg", which is compared with the values in argv (if argvName is NULL it
means this is a grouped entry; see GROUPED ENTRIES below). The dbName and
dbClass fields are used to look up a value for this option in the option database. The
defValue field specifies a default value for this configuration option if no value is specified in
either argv or the option database. Offset indicates where in widgRec to store information
about this option, and specFlags contains additional information to control the processing of
this configuration option (see FLAGS below). The last field, customPtr, is only used if

type is TK_CONFIG_CUSTOM; see CUSTOM OPTION TYPES below.

Tk_ConfigureWidget first processes argv to see which (if any) configuration options are
specified there. Argv must contain an even number of fields; the first of each pair of fields
must match the argvName of some entry in specs (unique abbreviations are acceptable), and
the second field of the pair contains the value for that configuration option. If there are
entries in spec for which there were no matching entries in argv, Tk_ConfigureWidget uses
the dbName and dbClass fields of the specs entry to probe the option database; if a value is
found, then it is used as the value for the option. Finally, if no entry is found in the option
database, the defValue field of the specs entry is used as the value for the configuration
option. If the defValue is NULL, or if the TK_CONFIG_DONT_SET_DEFAULT bit is set

in flags, then there is no default value and this specs entry will be ignored if no value is
specified in argv or the option database.

Once a string value has been determined for a configuration option,

Tk_ConfigureWidget translates the string value into a more useful form, such as a color if
type is TK_CONFIG_COLOR or an integer if type is TK_CONFIG_INT. This value is then
stored in the record pointed to by widgRec. This record is assumed to contain information
relevant to the manager of the widget; its exact type is unknown to Tk_ConfigureWidget.

The offset field of each specs entry indicates where in widgRec to store the information about
this configuration option. You should use the Tk_Offset macro to generate offset values (see
below for a description of Tk_Offset). The location indicated by widgRec and offset will be
referred to as the “target" in the descriptions below.

The type field of each entry in specs determines what to do with the string value of that
configuration option. The legal values for type, and the corresponding actions, are:

TK_CONFIG_ACTIVE_CURSOR
The value must be an ASCII string identifying a cursor in a form suitable for passing
to Tk_GetCursor. The value is converted to a Tk_Cursor by calling
Tk_GetCursor and the result is stored in the target. In addition, the resulting cursor
is made the active cursor for tkwin by calling XDefineCursor. If
TK_CONFIG_NULL_OK is specified in specFlags then the value may be an empty
string, in which case the target and tkwin's active cursor will be set to None. If the
previous value of the target wasn't None, then it is freed by passing it to
Tk_FreeCursor.

TK_CONFIG_ANCHOR
The value must be an ASCII string identifying an anchor point in one of the ways
accepted by Tk_GetAnchor. The string is converted to a Tk_Anchor by calling
Tk_GetAnchor and the result is stored in the target.

TK_CONFIG_BITMAP

About this Manual

The value must be an ASCII string identifying a bitmap in a form suitable for
passing to Tk_GetBitmapThe value is converted tg a Pixmap by calling
Tk_GetBitmap and the result is stored in the target. If TK_CONFIG_NULL_OK is
specified in specFlags then the value may be an empty string, in which case the
target is set to None. If the previous value of the target wasn't None, then it is freed
by passing it to Tk_FreeBitmap.

TK_CONFIG_BOOLEAN
The value must be an ASCII string specifying a boolean value. Any of the values
“true”, yes", on", or 1", or an abbreviation of one of these values, means true;
any of the values ““false", "no", “off", or 0", or an abbreviation of one of these
values, means false. The target is expected to be an integer; for true values it will be
set to 1 and for false values it will be set to 0.

TK_CONFIG_BORDER
The value must be an ASCII string identifying a border color in a form suitable for
passing to Tk_Get3DBorder. The value is converted to a (Tk_3DBorder *) by
calling Tk_Get3DBorder and the result is stored in the target. If
TK_CONFIG_NULL_OK is specified in specFlags then the value may be an empty
string, in which case the target will be set to NULL. If the previous value of the
target wasn't NULL, then it is freed by passing it to Tk_Free3DBorder.

TK_CONFIG_CAP_STYLE
The value must be an ASCII string identifying a cap style in one of the ways
accepted by Tk_GetCapStyle. The string is converted to an integer value
corresponding to the cap style by calling Tk_GetCapStyle and the result is stored in
the target.

TK_CONFIG_COLOR
The value must be an ASCII string identifying a color in a form suitable for passing
to Tk_GetColor. The value is converted to an (XColor *) by calling
Tk_GetColor and the result is stored in the target. If TK_CONFIG_NULL_OK is
specified in specFlags then the value may be an empty string, in which case the
target will be set to None. If the previous value of the target wasn't NULL, then it is
freed by passing it to Tk_FreeColor.

TK_CONFIG_CURSOR
This option is identical to TK_CONFIG_ACTIVE_CURSOR except that the new
cursor is not made the active one for tkwin.

TK_CONFIG_CUSTOM
This option allows applications to define new option types. The customPtr field of
the entry points to a structure defining the new option type. See the section
CUSTOM OPTION TYPES below for detalils.

TK_CONFIG_DOUBLE
The value must be an ASCII floating—point number in the format accepted by strtol.
The string is converted to a double value, and the value is stored in the target.

TK_CONFIG_END
Marks the end of the table. The last entry in specs must have this type; all of its other
fields are ignored and it will never match any arguments.

About this Manual

TK_CONFIG_FONT
The value must be an ASCII string identifying a font in a form suitable for passing to
Tk_GetFont. The value is converted to an (XFontStruct *) by calling
Tk_GetFont and the result is stored in the target. If TK_CONFIG_NULL_OK is
specified in specFlags then the value may be an empty string, in which case the
target will be set to NULL. If the previous value of the target wasn't NULL, then it is
freed by passing it to Tk_FreeFont.

TK_CONFIG_INT
The value must be an ASCII integer string in the format accepted by strtol (e.g. 0"
and Ox" prefixes may be used to specify octal or hexadecimal numbers,
respectively). The string is converted to an integer value and the integer is stored in
the target.

TK_CONFIG_JOIN_STYLE
The value must be an ASCII string identifying a join style in one of the ways
accepted by Tk_GetJoinStyle. The string is converted to an integer value
corresponding to the join style by calling Tk_GetJoinStyle and the result is stored in
the target.

TK_CONFIG_JUSTIFY
The value must be an ASCII string identifying a justification method in one of the
ways accepted by Tk _GetJustify. The string is converted to a Tk_Justify by calling
Tk_GetJustify and the result is stored in the target.

TK_CONFIG_MM
The value must specify a screen distance in one of the forms acceptable to
Tk_GetScreenMM. The string is converted to double—precision floating—point
distance in millimeters and the value is stored in the target.

TK_CONFIG_PIXELS
The value must specify screen units in one of the forms acceptable to Tk_GetPixels.
The string is converted to an integer distance in pixels and the value is stored in the
target.

TK_CONFIG_RELIEF
The value must be an ASCII string identifying a relief in a form suitable for passing
to Tk_GetRelief. The value is converted to an integer relief value by calling
Tk_GetRelief and the result is stored in the target.

TK_CONFIG_STRING
A copy of the value is made by allocating memory space with malloc and copying
the value into the dynamically—allocated space. A pointer to the new string is stored
in the target. If TK_CONFIG_NULL_OK is specified in specFlags then the value
may be an empty string, in which case the target will be set to NULL. If the previous
value of the target wasn't NULL, then it is freed by passing it to free.

TK_CONFIG_SYNONYM
This type value identifies special entries in specs that are synonyms for other entries.
If an argv value matches the argyName of a TK_CONFIG_SYNONYM entry, the
entry isn't used directly. Instead, Tk_ConfigureWidget searches specs for another
entry whose argvName is the same as the dbName field in the
TK_CONFIG_SYNONYM entry; this new entry is used just as if its argvName had

About this Manual

matched the argv value. The synonym mechanism allows multiple argv values to be
used for a single configuration option, such as ~"—background" and ~-bg".

TK_CONFIG_UID
The value is translated to a Tk_Uid (by passing it to Tk_GetUid). The resulting
value is stored in the target. If TK_CONFIG_NULL_OK is specified in
specFlags and the value is an empty string then the target will be set to NULL.

TK_CONFIG_WINDOW
The value must be a window path name. It is translated to a Tk_Window token and
the token is stored in the target.

GROUPED ENTRIES

In some cases it is useful to generate multiple resources from a single configuration value.
For example, a color name might be used both to generate the background color for a widget
(using TK_CONFIG_COLOR) and to generate a 3-D border to draw around the widget
(using TK_CONFIG_BORDER). In cases like this it is possible to specify that several
consecutive entries in specs are to be treated as a group. The first entry is used to determine a
value (using its argvName, dbName, dbClass, and defValue fields). The value will be
processed several times (one for each entry in the group), generating multiple different
resources and modifying multiple targets within widgRec. Each of the entries after the first
must have a NULL value in its argvName field; this indicates that the entry is to be grouped
with the entry that precedes it. Only the type and offset fields are used from these follow-on
entries.

FLAGS

The flags argument passed to Tk_ConfigureWidget is used in conjunction with the
specFlags fields in the entries of specs to provide additional control over the processing of
configuration options. These values are used in three different ways as described below.

First, if the flags argument to Tk_ConfigureWidget has the TK_CONFIG_ARGV_ONLY

bit set (i.e., flags | TK_CONFIG_ARGV_ONLY != 0), then the option database and
defValue fields are not used. In this case, if an entry in specs doesn't match a field in

argv then nothing happens: the corresponding target isn't modified. This feature is useful
when the goal is to modify certain configuration options while leaving others in their current
state, such as when a configure widget command is being processed.

Second, the specFlags field of an entry in specs may be used to control the processing of that
entry. Each specFlags field may consists of an OR-ed combination of the following values:

TK_CONFIG_COLOR_ONLY
If this bit is set then the entry will only be considered if the display for tkwin has
more than one bit plane. If the display is monochromatic then this specs entry will be
ignored.

TK_CONFIG_MONO_ONLY
If this bit is set then the entry will only be considered if the display for tkwin has
exactly one bit plane. If the display is hot monochromatic then this specs entry will
be ignored.

About this Manual

TK_CONFIG_NULL_OK
This bit is only relevant for some types of entries (see the descriptions of the various
entry types above). If this bit is set, it indicates that an empty string value for the
field is acceptable and if it occurs then the target should be set to NULL or None,
depending on the type of the target. This flag is typically used to allow a feature to
be turned off entirely, e.g. set a cursor value to None so that a window simply
inherits its parent's cursor. If this bit isn't set then empty strings are processed as
strings, which generally results in an error.

TK_CONFIG_DONT_SET_DEFAULT
If this bit is one, it means that the defValue field of the entry should only be used for
returning the default value in Tk_Configurelnfo. In calls to
Tk_ConfigureWidget no default will be supplied for entries with this flag set; it is
assumed that the caller has already supplied a default value in the target location.
This flag provides a performance optimization where it is expensive to process the
default string: the client can compute the default once, save the value, and provide it
before calling Tk_ConfigureWidget.

TK_CONFIG_OPTION_SPECIFIED
This bit is set and cleared by Tk_ConfigureWidget. Whenever
Tk_ConfigureWidget returns, this bit will be set in all the entries where a value was
specified in argv. It will be zero in all other entries. This bit provides a way for
clients to determine which values actually changed in a call to
Tk_ConfigureWidget.

The TK_CONFIG_MONO_ONLY and TK_CONFIG_COLOR_ONLY flags are typically

used to specify different default values for monochrome and color displays. This is done by
creating two entries in specs that are identical except for their defValue and specFlags fields.
One entry should have the value TK_CONFIG_MONO_ONLY in its specFlags and the
default value for monochrome displays in its defValue; the other entry entry should have the
value TK_CONFIG_COLOR_ONLY in its specFlags and the appropriate defValue for color
displays.

Third, it is possible to use flags and specFlags together to selectively disable some entries.
This feature is not needed very often. It is useful in cases where several similar kinds of
widgets are implemented in one place. It allows a single specs table to be created with all the
configuration options for all the widget types. When processing a particular widget type, only
entries relevant to that type will be used. This effect is achieved by setting the high—order
bits (those in positions equal to or greater than TK_CONFIG_USER_BIT) in

specFlags values or in flags. In order for a particular entry in specs to be used, its high—order
bits must match exactly the high—order bits of the flags value passed to
Tk_ConfigureWidget. If a specs table is being used for N different widget types, then N of
the high—order bits will be used. Each specs entry will have one of more of those bits set in
its specFlags field to indicate the widget types for which this entry is valid. When calling
Tk_ConfigureWidget, flags will have a single one of these bits set to select the entries for

the desired widget type. For a working example of this feature, see the code in tkButton.c.

TK_OFFSET

The Tk_Offset macro is provided as a safe way of generating the offset values for entries in
Tk_ConfigSpec structures. It takes two arguments: the name of a type of record, and the
name of a field in that record. It returns the byte offset of the named field in records of the

About this Manual

given type.
TK_CONFIGUREINFO

The Tk_Configurelnfo procedure may be used to obtain information about one or all of the
options for a given widget. Given a token for a window (tkwin), a table describing the
configuration options for a class of widgets (specs), a pointer to a widget record containing
the current information for a widget (widgRec), and a NULL argvName argument,
Tk_Configurelnfo generates a string describing all of the configuration options for the
window. The string is placed in interp—>result. Under normal circumstances it returns
TCL_OK; if an error occurs then it returns TCL_ERROR and interp—>result contains an
error message.

If argvName is NULL, then the value left in interp—>result by Tk _Configurelnfo consists

of a list of one or more entries, each of which describes one configuration option (i.e. one
entry in specs). Each entry in the list will contain either two or five values. If the
corresponding entry in specs has type TK_CONFIG_SYNONYM, then the list will contain
two values: the argvName for the entry and the dbName (synonym name). Otherwise the list
will contain five values: argvName, dbName, dbClass, defValue, and current value. The
current value is computed from the appropriate field of widgRec by calling procedures like
Tk_NameOfColor.

If the argvName argument to Tk_Configurelnfo is non—-NULL, then it indicates a single
option, and information is returned only for that option. The string placed in

interp—>result will be a list containing two or five values as described above; this will be
identical to the corresponding sublist that would have been returned if argvName had been
NULL.

The flags argument to Tk_Configurelnfo is used to restrict the specs entries to consider, just
as for Tk_ConfigureWidget.

TK_CONFIGUREVALUE

Tk_ConfigureValue takes arguments similar to Tk_Configurelnfo; instead of returning a
list of values, it just returns the current value of the option given by

argvName (argvName must not be NULL). The value is returned in interp—>result and
TCL_OK is normally returned as the procedure's result. If an error occurs in
Tk_ConfigureValue (e.g., argvName is not a valid option name), TCL_ERROR is returned
and an error message is left in interp—>result. This procedure is typically called to
implement cget widget commands.

TK_FREEOPTIONS

The Tk_FreeOptions procedure may be invoked during widget cleanup to release all of the
resources associated with configuration options. It scans through specs and for each entry
corresponding to a resource that must be explicitly freed (e.g. those with type
TK_CONFIG_COLOR), it frees the resource in the widget record. If the field in the widget
record doesn't refer to a resource (e.g. it contains a null pointer) then no resource is freed for
that entry. After freeing a resource, Tk_FreeOptions sets the corresponding field of the
widget record to null.

About this Manual

CUSTOM OPTION TYPES

Applications can extend the built—in configuration types with additional configuration types
by writing procedures to parse and print options of the a type and creating a structure
pointing to those procedures:

typedef struct Tk_CustomOption {
Tk_OptionParseProc *parseProc;
Tk_OptionPrintProc * printProc;
ClientDatalientData;

} Tk_CustomOption;

typedef int Tk_OptionParseProc(
ClientDatalientData,
Tcl_Interp #interp,
Tk_Windwin,
charajue,
chawitigRec,
ioffset);

typedef char *Tk_OptionPrintProc(
ClientDatalientData,
Tk_Windwin,
chawitigRec,
ioffset,
Tcl_FreeProc *freeProcPtr);

The Tk_CustomOption structure contains three fields, which are pointers to the two
procedures and a clientData value to be passed to those procedures when they are invoked.
The clientData value typically points to a structure containing information that is needed by
the procedures when they are parsing and printing options.

The parseProc procedure is invoked by Tk_ConfigureWidget to parse a string and store the
resulting value in the widget record. The clientData argument is a copy of the

clientData field in the Tk_CustomOption structure. The interp argument points to a Tcl
interpreter used for error reporting. Tkwin is a copy of the tkwin argument to
Tk_ConfigureWidget. The value argument is a string describing the value for the option; it
could have been specified explicitly in the call to Tk_ConfigureWidget or it could come

from the option database or a default. Value will never be a null pointer but it may point to an
empty string. RecordPtr is the same as the widgRec argument to Tk_ConfigureWidget; it
points to the start of the widget record to modify. The last argument, offset, gives the offset in
bytes from the start of the widget record to the location where the option value is to be
placed. The procedure should translate the string to whatever form is appropriate for the
option and store the value in the widget record. It should normally return TCL_OK, but if an
error occurs in translating the string to a value then it should return TCL_ERROR and store
an error message in interp—>result.

The printProc procedure is called by Tk_Configurelnfo to produce a string value describing
an existing option. Its clientData, tkwin, widgRec, and offset arguments all have the same
meaning as for Tk_OptionParseProc procedures. The printProc procedure should examine
the option whose value is stored at offset in widgRec, produce a string describing that option,
and return a pointer to the string. If the string is stored in dynamically—allocated memory,
then the procedure must set *freeProcPtr to the address of a procedure to call to free the
string's memory; Tk_Configurelnfo will call this procedure when it is finished with the

string. If the result string is stored in static memory then printProc need not do anything with
the freeProcPtr argument.

About this Manual

Once parseProc and printProc have been defined and a Tk_CustomOption structure has

been created for them, options of this new type may be manipulated with Tk_ConfigSpec

entries whose type fields are TK_CONFIG_CUSTOM and whose customPtr fields point to
the Tk_CustomOption structure.

EXAMPLES

Although the explanation of Tk_ConfigureWidget is fairly complicated, its actual use is
pretty straightforward. The easiest way to get started is to copy the code from an existing
widget. The library implementation of frames (tkFrame.c) has a simple configuration table,
and the library implementation of buttons (tkButton.c) has a much more complex table that
uses many of the fancy specFlags mechanisms.

KEYWORDS

anchor bitmap booleanborder cap style color, configuration optionscursor custom,
double font, integer join style justify, millimeters pixels relief, synonym uid

Tk_AllocBitmapFromObj, Tk _GetBitmap,
Tk_GetBitmapFromODbj, Tk_DefineBitmap,
Tk_NameOfBitmap, Tk_SizeOfBitmap,
Tk_FreeBitmapFromObj, Tk _FreeBitmap,
Tk_GetBitmapFromData — maintain database of
single—plane pixmaps

SYNOPSIS

#include <tk.h>

Pixmap

Tk_GetBitmapFromObj(interp, tkwin, objPtr)

Pixmap

Tk_GetBitmap(interp, tkwin, info)

Pixmap

Tk_GetBitmapFromObj(tkwin, objPtr)

int

Tk_DefineBitmap(interp, name, source, width, height)
char *

Tk_NameOfBitmap(display, bitmap)
Tk_SizeOfBitmap(display, bitmap, widthPtr, heightPtr)
Tk_FreeBitmapFromObj(tkwin, objPtr)

Tk _FreeBitmap(display, bitmap)

About this Manual

ARGUMENTS

Tcl_Interp *interp (in)
Interpreter to use for error reporting; if NULL then no error message is left after
errors.

Tk_Window tkwin (in)
Token for window in which the bitmap will be used.

Tcl_Obj *objPtr (in/out)
String value describes desired bitmap; internal rep will be modified to cache pointer
to corresponding Pixmap.

CONST char *info (in)
Same as objPtr except description of bitmap is passed as a string and resulting
Pixmap isn't cached.

CONST char *name (in)
Name for new bitmap to be defined.

char *source (in)
Data for bitmap, in standard bitmap format. Must be stored in static memory whose
value will never change.

int width (in)
Width of bitmap.

int height (in)
Height of bitmap.

int *widthPtr (out)
Pointer to word to fill in with bitmap's width.

int *heightPtr (out)
Pointer to word to fill in with bitmap's height.

Display *display (in)
Display for which bitmap was allocated.

Pixmap bitmap (in)
Identifier for a bitmap allocated by Tk_AllocBitmapFromObj or Tk_GetBitmap.

DESCRIPTION

These procedures manage a collection of bitmaps (one—plane pixmaps) being used by an
application. The procedures allow bitmaps to be re—used efficiently, thereby avoiding server
overhead, and also allow bitmaps to be named with character strings.

Tk_AllocBitmapFromObj returns a Pixmap identifier for a bitmap that matches the
description in objPtr and is suitable for use in tkwin. It re—uses an existing bitmap, if
possible, and creates a new one otherwise. ObjPtr's value must have one of the following
forms:

About this Manual

@fileName
FileName must be the name of a file containing a bitmap description in the standard
X11 or X10 format.

name
Name must be the name of a bitmap defined previously with a call to
Tk_DefineBitmap. The following hames are pre—defined by Tk:

error
The international "don't" symbol: a circle with a diagonal line across it.

gray75
75% gray: a checkerboard pattern where three out of four bits are on.

gray50
50% gray: a checkerboard pattern where every other bit is on.

gray25
25% gray: a checkerboard pattern where one out of every four bits is on.

grayl2
12.5% gray: a pattern where one-eighth of the bits are on, consisting of
every fourth pixel in every other row.

hourglass
An hourglass symbol.

info
A large letter “i".

guesthead
The silhouette of a human head, with a question mark in it.

guestion
A large question—mark.

warning
A large exclamation point.

In addition, the following pre—defined names are available only on the
Macintosh platform:

document
A generic document.

stationery
Document stationery.

edition
The edition symbol.

application
Generic application icon.

About this Manual

accessory
A desk accessory.

folder
Generic folder icon.

pfolder
A locked folder.

trash
A trash can.

floppy
A floppy disk.

ramdisk
A floppy disk with chip.

cdrom
A cd disk icon.

preferences
A folder with prefs symbol.

guerydoc
A database document icon.

stop
A stop sign.

note
A face with ballon words.

caution
A triangle with an exclamation point.

Under normal conditions, Tk_AllocBitmapFromObj returns an identifier for the
requested bitmap. If an error occurs in creating the bitmap, such as when

objPtr refers to a non—existent file, then None is returned and an error message is
left in interp's result if interp isn't NULL. Tk_AllocBitmapFromObj caches
information about the return value in objPtr, which speeds up future calls to
procedures such as Tk_AllocBitmapFromObj and Tk_GetBitmapFromObj.

Tk_GetBitmap is identical to Tk_AllocBitmapFromObj except that the description of the
bitmap is specified with a string instead of an object. This prevents Tk_GetBitmap from
caching the return value, so Tk_GetBitmap is less efficient than
Tk_AllocBitmapFromOb;j.

Tk_GetBitmapFromObj returns the token for an existing bitmap, given the window and
description used to create the bitmap. Tk_GetBitmapFromObj doesn't actually create the
bitmap; the bitmap must already have been created with a previous call to
Tk_AllocBitmapFromObj or Tk_GetBitmap. The return value is cached in objPtr, which
speeds up future calls to Tk_GetBitmapFromObj with the same objPtr and tkwin.

About this Manual

Tk_DefineBitmap associates a name with in—-memory bitmap data so that the name can be
used in later calls to Tk_AllocBitmapFromObj or Tk_GetBitmap. The nameld argument

gives a name for the bitmap; it must not previously have been used in a call to
Tk_DefineBitmap. The arguments source, width, and height describe the bitmap.
Tk_DefineBitmap normally returns TCL_OK; if an error occurs (e.g. a bitmap named

nameld has already been defined) then TCL_ERROR is returned and an error message is left
in interp—>result. Note: Tk_DefineBitmap expects the memory pointed to by source to be
static: Tk_DefineBitmap doesn't make a private copy of this memory, but uses the bytes
pointed to by source later in calls to Tk_AllocBitmapFromObj or Tk_GetBitmap.

Typically Tk_DefineBitmap is used by #include—ing a bitmap file directly into a C program

and then referencing the variables defined by the file. For example, suppose there exists a file
stip.bitmap, which was created by the bitmap program and contains a stipple pattern. The
following code uses Tk_DefineBitmap to define a new bitmap named foo:

Pixmap bitmap;

#include "stip.bitmap"

Tk_DefineBitmap(interp, "foo", stip_bits,
stip_width, stip_height);

bitmap = Tk_GetBitmap(interp, tkwin, "foo");

This code causes the bitmap file to be read at compile—time and incorporates the bitmap
information into the program's executable image. The same bitmap file could be read at
run—time using Tk_GetBitmap:

Pixmap bitmap;
bitmap = Tk_GetBitmap(interp, tkwin, "@stip.bitmap");

The second form is a bit more flexible (the file could be modified after the program has been
compiled, or a different string could be provided to read a different file), but it is a little
slower and requires the bitmap file to exist separately from the program.

Tk maintains a database of all the bitmaps that are currently in use. Whenever possible, it
will return an existing bitmap rather than creating a new one. When a bitmap is no longer
used, Tk will release it automatically. This approach can substantially reduce server
overhead, so Tk_AllocBitmapFromObj and Tk_GetBitmap should generally be used in
preference to Xlib procedures like XReadBitmapFile.

The bitmaps returned by Tk_AllocBitmapFromObj and Tk_GetBitmap are shared, so
callers should never modify them. If a bitmap must be modified dynamically, then it should
be created by calling Xlib procedures such as XReadBitmapFile or

XCreatePixmap directly.

The procedure Tk_NameOfBitmap is roughly the inverse of Tk_GetBitmap. Given an X
Pixmap argument, it returns the textual description that was passed to Tk_GetBitmap when
the bitmap was created. Bitmap must have been the return value from a previous call to
Tk_AllocBitmapFromObj or Tk_GetBitmap.

Tk_SizeOfBitmap returns the dimensions of its bitmap argument in the words pointed to by
the widthPtr and heightPtr arguments. As with Tk_NameOfBitmap, bitmap must have been
created by Tk_AllocBitmapFromObj or Tk_GetBitmap.

About this Manual

When a bitmap is no longer needed, Tk_FreeBitmapFromObj or Tk_FreeBitmap should
be called to release it. For Tk_FreeBitmapFromObj the bitmap to release is specified with
the same information used to create it; for Tk_FreeBitmap the bitmap to release is specified

with its Pixmap token. There should be exactly one call to Tk_FreeBitmapFromObj or
Tk_FreeBitmap for each call to Tk_AllocBitmapFromObj or Tk_GetBitmap.

BUGS

In determining whether an existing bitmap can be used to satisfy a new request,
Tk_AllocBitmapFromObj and Tk_GetBitmap consider only the immediate value of the
string description. For example, when a file name is passed to Tk_GetBitmap,

Tk_GetBitmap will assume it is safe to re—use an existing bitmap created from the same file

name: it will not check to see whether the file itself has changed, or whether the current
directory has changed, thereby causing the name to refer to a different file.

KEYWORDS
bitmap pixmap

Tk_GetPixelsFromObj, Tk _GetPixels, Tk_GetMMFromObj,
Tk_GetScreenMM - translate between strings and screen
units

SYNOPSIS

#include <tk.h>

int

Tk _GetPixelsFromObij(interp, tkwin, objPtr, intPtr)
int

Tk_GetPixels(interp, tkwin, string, intPtr)

int

Tk_GetMMFromObij(interp, tkwin, objPtr, doublePtr)
int

Tk _GetScreenMM(interp, tkwin, string, doublePtr)

ARGUMENTS

Tcl_Interp *interp (in)
Interpreter to use for error reporting.

Tk_Window tkwin (in)

Window whose screen geometry determines the conversion between absolute units

and pixels.

About this Manual

Tcl_Obj *objPtr (in/out)
String value specifies a distance on the screen; internal rep will be modified to cache
converted distance.

char *string (in)
Same as objPtr except specification of distance is passed as a string.

int *intPtr (out)
Pointer to location in which to store converted distance in pixels.

double *doublePtr (out)
Pointer to location in which to store converted distance in millimeters.

DESCRIPTION

These procedures take as argument a specification of distance on the screen (objPtr or string)
and compute the corresponding distance either in integer pixels or floating—point millimeters.
In either case, objPtr or string specifies a screen distance as a floating—point number

followed by one of the following characters that indicates units:

<none>
The number specifies a distance in pixels.

c
The number specifies a distance in centimeters on the screen.
[
The number specifies a distance in inches on the screen.
m
The number specifies a distance in millimeters on the screen.
p

The number specifies a distance in printer's points (1/72 inch) on the screen.

Tk_GetPixelsFromObj converts the value of objPtr to the nearest even number of pixels
and stores that value at *intPtr. It returns TCL_OK under normal circumstances. If an error
occurs (e.g. objPtr contains a number followed by a character that isn't one of the ones
above) then TCL_ERROR is returned and an error message is left in interp's result if
interp isn't NULL. Tk_GetPixelsFromObj caches information about the return value in
objPtr, which speeds up future calls to Tk_GetPixelsFromObj with the same objPtr.

Tk_GetPixels is identical to Tk_GetPixelsFromObj except that the screen distance is
specified with a string instead of an object. This prevents Tk_GetPixels from caching the
return value, so Tk_GetAnchor is less efficient than Tk_GetPixelsFromObj.

Tk_GetMMFromObj and Tk_GetScreenMM are similar to Tk_GetPixelsFromObj and
Tk_GetPixels (respectively) except that they convert the screen distance to millimeters and
store a double—precision floating—point result at *doublePtr.

About this Manual

KEYWORDS

centimetersconvert inches millimeters pixels points screen units

Appendix 3: Keywords

A

anchor
ConfigWidg

B

balloon

tixBalloon
bitmap

ConfigWidg GetBitmap
boolean

ConfigWidg
border

ConfigWidg
button box

tixStdButtonBox

C

cap style
ConfigWidg
centimeters
GetPixels
choice
tixSelect
class

options
color

ConfigWidg
ComboBox

tixComboBox
compound

compound
configuration options

ConfigWidg
container
tixScrolledWindow tixSelect tixStdButtonBox
Container Widget
tixPanedWindow
container widget
tixButtonBox
context—sensitive help

About this Manual

tixBalloon
convert

GetPixels
cursor

ConfigWidg
custom

ConfigWidg

D

dialog

tixDirSelectDialog tixExFileSelectDialogtixFileSelectDialog
directory list

tixDirL ist
directory selector
tixDirSelectDialog
directory tree
tixDirTree
display item
tixDisplayStyle
display style
tixDisplayStyle
double
ConfigWidg
F
file entry
tixFileEntry
file selection dialog
tix
file selector
tixExFileSelectBoxtixExFileSelectDialogtixFileSelectBoxtixFileSelectDialog
font
ConfigWidg
form
tixForm
frame
frame tixScrolledWindow
G
geometry management
tixForm
grab
tixUtils
grid

tixGrid

About this Manual

H

height
image
hierarchical listbox
tixChecklList tixHList, tixScrolledHList tixTree

image

image compoundpixmap
imagetext

tixDisplayStyle
inches

GetPixels
input only

tixInputOnly
integer

ConfigWidg
invisible

tixInputOnly

J

join style
ConfigWidg
justify
ConfigWidg

L

label entry
tixLabelEntry
label frame
tixLabelFrame
listbox
tixComboBox tixScrolledListBox

M

mega widgets
TixIntro
meter
tixMeter
millimeters
ConfigWidg, GetPixels
Motif window manager
tixMwm

mwm
tixMwm

About this Manual

N

name
options

notebook
tixListNoteBook tixNBFrame tixNoteBook

O

Object
tixDestroy
option menu

tixOptionMenu

P

pixels

ConfigWidg GetPixels
pixmap

GetBitmap pixmap
points

GetPixels
popup menu

tixPopupMenu
progress

tixMeter

R

relief
ConfigWidg

S

screen units
GetPixels
scroll
tixScrolledHList tixScrolledListBox tixScrolledText tixScrolledWindow
shell
tixwish
spinbox
tixControl
spread sheet
tixGrid
standard option

options
switch

options
synonym
ConfigWidg

About this Manual

T
table
tixGrid
tabular listbox
tixTList
text
tixScrolledText
Tix
TixIntro, tixBalloon, tixDestroy
TIX
tixPanedWindow
Tk
tixwish
toolkit
tixwish
tree

tixCheckList tixTree
types of images

image

U

uid
ConfigWidg

W

widget
frame tixBalloon tixButtonBox tixCheckList tixComboBox tixControl tixDirlL ist,
tixDirSelectDialog tixDirTree, tixExFileSelectBoxtixExFileSelectDialogtixFileEntry,
tixFileSelectBox tixFileSelectDialogtixHList, tixInputOnly, tixLabelEntry tixLabelFrame,
tixListNoteBook tixMeter, tixNBFrame tixNoteBook tixOptionMeny tixPopupMenu,
tixScrolledHList tixScrolledListBox tixScrolledText tixScrolledWindow tixSelect,
tixStdButtonBox tixTList, tixTree

width
image

window
tixScrolledWindow

wish
tixwish

X

XPM

ixma

	Table of Contents
	About this Manual
	Legal Notices
	Chapter 1: Introduction to the Tix Library
	TixIntro - Introduction to the Tix library

	Chapter 2: Standard Widgets
	tixGrid - Create and manipulate Tix Grid widgets
	tixHList - Create and manipulate Tix Hierarchial List widgets
	tixInputOnly - Create and manipulate TIX InputOnly widgets
	tixNBFrame - Create and manipulate Tix NoteBook Frame widgets
	tixTList - Create and manipulate Tix Tabular List widgets

	Chapter 3: Mega Widgets
	tixBalloon - Create and manipulate tixBalloon widgets
	tixButtonBox - Create and manipulate Tix ButtonBox widgets
	tixCheckList - Create and manipulate tixCheckList widgets
	tixComboBox - Create and manipulate tixComboBox widgets
	tixControl - Create and manipulate tixControl widgets
	tixDirList - Create and manipulate tixDirList widgets
	tixDirSelectDialog - Create and manipulate directory selection dialogs.
	tixDirTree - Create and manipulate tixDirTree widgets
	tixExFileSelectBox - Create and manipulate tixExFileSelectBox widgets
	tixExFileSelectDialog - Create and manipulate tixExFileSelectDialog widgets
	tixFileEntry - Create and manipulate tixFileEntry widgets
	tixFileSelectBox - Create and manipulate Tix FileSelectBox widgets
	tixFileSelectDialog - Create and manipulate tixFileSelectDialog widgets
	tixLabelEntry - Create and manipulate tixLabelEntry widgets
	tixLabelFrame - Create and manipulate tixLabelFrame widgets
	tixListNoteBook - Create and manipulate tixListNoteBook widgets
	tixMeter - Create and manipulate Tix Meter widgets
	tixNoteBook - Create and manipulate tixNoteBook widgets
	tixOptionMenu - Create and manipulate tixOptionMenu widgets
	tixPanedWindow - Create and manipulate tixPanedWindow widgets
	tixPopupMenu - Create and manipulate tixPopupMenu widgets
	tixScrolledHList - Create and manipulate Tix ScrolledHList widgets
	tixScrolledListBox - Create and manipulate Tix ScrolledListBox widgets
	tixScrolledText - Create and manipulate Tix ScrolledText widgets
	tixScrolledWindow - Create and manipulate Tix ScrolledWindow widgets
	tixSelect - Create and manipulate tixSelect widgets
	tixStdButtonBox - Create and manipulate Tix StdButtonBox widgets
	tixTree - Create and manipulate tixTree widgets

	Chapter 4: Display Items
	tixDisplayStyle - Create style object for Tix display items.

	Chapter 5: Image Types
	compound - multi-line compound image type.
	pixmap - image type for the XPM file format.

	Chapter 6: Other Commands
	tix - Manipulate internal states of the Tix library
	tixDestroy - Destroy Tix Objects
	tixForm - Geometry manager based on attachment rules
	tixGetBoolean - Get the boolean value of a string.
	tixGetInt - Get the integer value of a string.
	tixMwm - Communicate with the Motif(tm) window manager.
	tixUtils - Utility commands in Tix.

	Chapter 7: Executable Programs
	tixwish - Windowing shell for interpreting Tix commands.

	Appendix 1: Tk Commands
	frame - Create and manipulate frame widgets
	image - Create and manipulate images
	options - Standard options supported by widgets

	Appendix 2: Tk Library References
	Tk_ConfigureWidget, Tk_Offset, Tk_ConfigureInfo, Tk_ConfigureValue, Tk_FreeOptions - process configuration options for widgets
	Tk_AllocBitmapFromObj, Tk_GetBitmap, Tk_GetBitmapFromObj, Tk_DefineBitmap, Tk_NameOfBitmap, Tk_SizeOfBitmap, Tk_FreeBitmapFromObj, Tk_FreeBitmap, Tk_GetBitmapFromData - maintain database of single-plane pixmaps
	Tk_GetPixelsFromObj, Tk_GetPixels, Tk_GetMMFromObj, Tk_GetScreenMM - translate between strings and screen units

	Appendix 3: Keywords
	A
	B
	C
	D
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

